
Programs and Processes

� Goals:

* Understand the process model

* Learn to operate on processes

* Be Aware of the environment

� Topics:

* Motivation

* 2.0 What is a Process?

* 2.1,2.3-4, 2.9 Model: Layout, Attributes and States

* 2.5-8, 2.10 Operations: create, wait, kill, background...

* 2.11, 2.2 Critical Sections, Static variables in C

* 3 Views: System calls, Commands & Shell scripting

� Readings: Chapter 2 (Robbins, pp. 29-76)

� Recommended Exercises: 2.1 - 8

− 2 −

Why use processes?

� Autonomous vehicle, e.g. Mars rover

* Take in surrounding terrain for path mapping

* Read depth sensors to check distance from obstacles

* Control power sent to different motors

* Data gathering: air, temperature, light, soil

* Listen to control tower on earth (e.g. unjam antenna)

� Questions:

* How to structure your application?

* multiple concurrent tasks!

* give timely-enough response to many

� Tools: Processes, Signal handlers, threads

� Ch. 2: How can processes help?

− 3 −

Single Process Approach

� Consider audio streaming (e.g. real audio)

/* Cyclic Executive approach */

while (1) {

/* 1. Synchronize to highest frequency */

/* 2. Read Keyboard and mouse */

/* 3. Recompute player position */

/* 4. Uncompress audio */

/* 5. Update display and emit sounds */

}

	 Pros: Okay for simple applications (few harmonic tasks)

 Cons: (i) Timing gets harder as number of tasks increase!

* (ii) Expensive steps make other steps wait too long

- poll smaller tasks periodiclly from within longer ones?

* (iii) May miss hard real-time constraints!

* (iv) Performance tuning is tricky!

- reorder steps, decompose long steps,

* (v) Adding/removing a tasks => review entire loop

− 4 −

Multiprocess Approach

� Strategy:

* Each little while loop runs at its own pace

* Each process is scheduled by Operating System

/* 1. Parent process creates N child processes */

/* 2. child process(i) has a while loop on task(i) */

/* 3. Parent runs GUI, passes user request to children */

/* 4. Parent coordinates children, e.g. for exit */

� Pros:

* Simpler to design, code, debug, tune, port

* (Even better solution is threads)

* Scalability to multiprocessors or networks

* Modularity: adding/removing processes is simpler

* Protection: mission-critical application

- Reduced impact of bugs in code for a task

 Cons: costs more, are slower, needs scheduling

* Coordination needs to be programmed explicitly.

− 5 −

2.0 What is a process?

� Process

* "is instance of a ’program’ whose execution has started

- but has not yet terminated" (pp. 29)

* "has its own address space and execution state"

� Recall what a Program is.

* C source program, e.g. Example 2.1 (pp. 40)

* Executable program, e.g. a.out

� Q? When does an executable program become a process?

* O.S. reads the program in memory

* O.S. gives it a unique identifier, i.e. process ID

* O.S. track its state, memory address / layout, ...

* O.S. has allocates required resources

� Q? How many processes can be created for a program?

� Q? How many executable program can a process run?

* At a given time

* Over its lifetime

− 6 −

2.1 Process Model: Layout

� A sample layout - Figure 2.1 (pp. 32)

� Sections

* Program text - executable code

* Static data - e.g. global variables

* Dynamic Data

- Heap - for malloc() on pointers

- Stack - activation records during a function call

* Environment - e.g. command line arguments

� Q? What is the life-time for a data-item in stack?

- in heap?

� Q? Determine the size of initialized static data for

- the two C programs in Exercise 2.1 (p. 33)

� Q? What is the layout of a.out file? (*)

− 7 −

2.3-4, 2.9 Process Attributes

� Process Attributes

* Ids: process ID, parent process ID, ... (Sec. 2.3)

* User/System Environment (Sec. 2.9)

* Context switch attributes for CPU scheduler (Sec. 2.4)

� Process Id : a unique integer identifying processes

* Helps O.S. track process requests, state, etc.

� Other attributes

* Parent process- requests creation of a process

* Owner or "user" has special privilege over a process

- ’effective user ID’ may vary over a process execution

* User/System Environment (Section 2.9)

- Current directory, terminal type, path, ...

� Q? How to get process attributes?

* commands: ’ps’ (Ex. 2.2, pp.42), ’env’ (Ex. 2.17, pp. 64)

* system calls: getpid(), getppid() in Ex. 2.1 (pp. 40),

− 8 −

2.3 Process Attributes

� Context switch and Process context attributes

* Context Switch = transfer CPU between processes

* Process context - information needed to restart a process

- Process Id, User Id, previlege,

- Layout: stack, heap, static data,

- CPU registers (e.g. program counter)

- handles for open files (e.g. STDIN), sockets, etc.

- process state, status of I/O, scheduling/accounting info.

� Q? Compare and contrast process context and environment.

� 2.9 Process Environment

* Unix command "env" (Example 2.17, pp. 64)

* POSIX environment: Table 2.5 (pp. 62)

extern char **environ - Example 2.15 (pp. 63)

char *getenv(const char *name);

* Example 2.16 (pp. 63-64)

− 9 −

2.4 Dynamic Model: State Transition Model

� State of a process = status at a particular time

* Common Process States (Table 2.2, pp. 41)

* new, running, blocked, ready, done

 State transition diagram (Fig. 2.3, pp. 41) - Events

* Create, Terminate

* CPU scheduler - selected to run and restarted,

- quantum expired and

* O.S. service (e.g. I/O) request, service complete

! Q? Trace life-cycle of Example 2.1 in the STD (Fig. 2.3).

" Q? Which of the above events lead to context switches?

− 10 −

2.5-8, 2.10 Process Operations

Conceptual operations (User level)

* Create (Sec. 2.5)

* O.S. service, e.g. wait for an event (Sec. 2.6)

* Change program code (Sec. 2.7)

* Run background (Sec. 2.8)

* Terminate (Sec. 2.10)

$ Operations can be performed via

* Command line, Shell scripts

* System calls in C like language

% Operation from Command line

* Shell creates a child process to run each command

* Shell waits for the child to complete,

- unless child is to run in background

* ’kill’ or ’ctrl-c’ to terminate a process

* ’ctrl-z’ to stop a process

* Other: &, bg, fg, ps

− 11 −

Process Operations : System Calls

& System calls

* Create - fork(), Example 2.4 (pp 44)

- exec() to change code section- Program 2.6 (pp 53)

* Terminate - exit()

* Wait for a child - wait(), waitpid()

- Exercise 2.3 pp. 49

* Background - setsid(), Example 2.14 (pp 60-61)

' Example 2.14: Simple Biff (pp 60-61)

* 2.14 Exercise: Simple Biff (pp 72-73)

− 12 −

Process Creation - fork()

(Syntax

pid_t fork(void) [See pp. 43]

* Returns pid of child to parent process

* Returns 0 to newly created child process

) Coding style - See Example 2.4 (pp. 44)

* Semantics

* Layout of Child = layout of parent.

* Different: value returned by fork(), pid, ppid,

- CPU use meter, alarms, locks, pending signals

* Identical but disjoint address space:

- code section, program counter, data section,

- environment, previledges, scheduling priority, ...

- changes after fork() are local

* Shared: open filepointers, system resources

- changes after fork() are seen by other process!

− 13 −

Process Creation

+ Hierarchical Parent, child relationship

* Parent process creates children processes

* which, in turn create other processes

* forming a tree of processes

* Example 2.7 (pp. 46-47)

, Answer the following question on fork():

* Q? How many parent can a process have?

* Q? How many children can a process have?

* Q? Identify the default Concurrent Execution Option:

- 1. Parent and children execute concurrently.

- 2. Parent waits until children terminate.

* Identify default resource sharing options:

- 1. Parent and children share all resources

- 2. Children share subset of parent’s resources

- 3. Parent and child share no resources

− 14 −

2.10 Process Termination

- Self determined termination

void _exit(int status)

void exit(int status)

* Ask OS for termination

* Process’ resources deallocated by OS

* Send data to parent

- parent does wait() to receive data

- Example 2.8 (pp. 48)

. Parent requested termination

* Parent executes kill(child_pid, signal_int)

* Details in Chapter 5

* Purpose: child exceeds allocated resources

- task allocated to child not needed

- parent is exiting

− 15 −

2.6 Coordinating Processes

/ Purpose: Data sharing, speed-up computation,

- modularity, Convenience, etc.

0 Mechanisms:

* parent: wait(childpid) - child: exit(...)

* Pipes (Ch. 3), Signals (Ch. 5), Message (Ch. 12)

* Other - Critical section (8, 2.11), shared memory, ...

1 Syntax:

pid_t wait(int *stat_loc);

2 Semantics

* Return value = pid of terminated child

- or -1 with error code in "errno"

* Pause caller until a child terminates/stops

- or caller receives a signal ("errno" = EINTR)

* Return immediately if no children (errno = ECHILD)

- if a un-waited-for child has already terminated

* Program 2.5 (pp. 49)

3 Interesting Exercise 2.3 (pp. 49-50).

− 16 −

2.6 Coordinating Processes (contd.)

4 *stat_loc - to get return status of child process

* Recall child process : exit(status)

* Macros to test status value

- e.g. WIFEXITED, WIFSIGNALED, ...

* Example 2.8 (pp. 48-49)

5 Waiting for a specific child

pid_t waitpid(pid_t pid, int *stat_loc, int options);

* pid > 0 => wait for a specific child

- pid = -1 => wait for any child

* option = WNOHANG => non-blocking wait.

* Example 2.11 (pp. 51)

* See details in man page.

6 Interesting Exercises 2.4, 2.5 (pp. 52-53).

− 17 −

Special Topics in Process Creation

7 2.7 The exec System call

* Used after fork() to change code section

* Overwrites data (globals, stack, heap)

* What is preserved after exec (Table 2.4 (pp. 58))

- May preserve argv[] unless execle / execve

- Preserves open files

- Effect on signal, locks in Chapter 5.

8 2.8 Background Processes, e.g. ls -l &

* Parent does not wait for the process to finish

* ctrl-C does not terminate it

* Q? How to create a background process?

- Program 2.9 (pp. 59)

- setsid() - create session w/o controlling terminal

9 Daemon: background process run indefinitely

- Q? Why?

