
Files and Directories

� Administrative

* HW# 1 Due this week

� Goals: Understand the file system concepts

* files, links, and directories

* device independent interface

� Topics:

* 3.0 Device independence

* 3.1 Directory operations, Paths

* 3.2 Disk structures: inodes, links, directories

* 3.3 Memory structres: descriptors, file pointers

* 3.4-5,3.9 Filters, Redirection, Pipes

* 3.6-8 File operations: blocking/non-blocking

� Readings: Chapter 3 (Robbins, pp.76-137)

� Recommended Exercises: 3.1 - 12

− 2 −

3.0 Device independence

� Q? Which devices are of interest?

* terminal, disk, tapes, audio, network, ...

* special files located in /dev/

* Q? Name 3 other device controlled by OS.

� Why device independence ?

* Ex. restoring files from tape backup to disk

* text/images from internet -> disk -> printer

* audio: microphone -> disk/CD -> speakers

* How many interfaces do you want to learn?

� What is Device independence ?

* uniform interface to all devices!

* Operations: open, close, read, write, ioctl

* File desriptors are used for all devices

* Device driver hides device specific things

− 3 −

3.0 Device independence

� Advantage: simplifies systems programming

* Ex. I/O redirection from terminal/keybard to files

* Ex. Pipes to link filter processes

* postscript files

* tar files (interchanging tapes, disk)

* audio files: (Sec. 3.11, Program 3.4)

	 Q? What are the disadvantages of device independence?

* Which applications need device-specific operations?

 Types of files:

* Regular data files, directory files,

* Block special files - e.g. disk

* Character special files - e.g. keyboard

* Others, e.g. socket, ...

� How are collections of files organized?

− 4 −

3.1 Directory operations, Paths

� Why directories?

* Allows symbolic naming of files

* EE/CS Bldg. instead of

- 200 Union St. SE, Minneapolis

 Directories: filenames --> physical properties

* Disk addresses - start, end, ...

* Type, size, date of creation/update

* owner, permission, ...

� Directory Structures

* Linear tables

* Fixed depth tree, e.g. one linear table per user

* General Tree structures (Fig. 3.1, pp. 79)

− 5 −

3.1 Directory Operations

� Operation on Tree Structured directory

* A. Where am I?

* B. Take me home (or to another node)

* C. Where is an interesting file?

* D. Default search paths for popular executables

* E. open, read, write, close

� A. Current working directory

* Command: pwd

/dirA/dirB

* System calls - Examples 3.2, 3.3 (pp. 80-81)

extern char *getcwd(char *buf, size_t size);

long pathconf(const char *path, int name);

� Naming files- fullname or nicknames

* Absolute: /dirA/my1.dat, /dirA/dirB/my1.dat

- path(root, file)

* Relative: my1.dat, ../my2.dat

- path(current working directory, file)

- Special directories: . and ..

− 6 −

3.1 Directory operations

� B. Take me home (or to another node)

* command: cd [<directoryname>]

cd /dirA ; pwd

cd ../dirC ; pwd

cd ; pwd

* Q? Identify system call from Table 5.3 (pp. 191).

� C. Where is an interesting file? [Appendix A.1.3]

* Command: find pathname(s) operands

find / -name "cc" -print

find . -name "*.c" -size +10 -print

� D. Default search paths for popular executables

* 3.1.2 Search Paths = collection of directories

* Shell looks in these for commands typed in!

printenv | grep PATH

PATH=/usr/bin:/etc:/usr/local/bin:.

* Interesting Exercise 3.1 (pp. 85)

* Q? Recall system call to extract PATH (Sec. 2.9).

− 7 −

3.1 Directory Operations

� E. open, read, write, close

* System calls: opendir(), readdir(), closdir()

* Ex. specs (pp. 82), Program 3.1 (pp. 83)

* Note: struct dirent

* Q? Is opendir() signal safe?

� 3.1.3 Unix File Systems (Fig. 3.2, pp. 86)

* disk drive --> partition(s), p1, p2, ...

* each partition has a directory

* directory(p1) mounted on directory(p2)

� Q? What is kept under the following?

* /dev, /etc, /home, /opt, /usr, /var

− 8 −

3.2 Disk structures: inodes

� inode = structure to store a file descriptor

* Figure 3.3 (pp. 87)

* Fixed size (Does not contain filenames)

* Stored in inode-list array at disk start

� What information is in inodes?

* Has file size, location, owner, c/a/m time, permission,

- pointers to data blocks, hard link count

* System call: stat(), spec. pp. 88

* Program Example 3.6 (pp. 89)

− 9 −

3.2 Data Structure for File

� The data-structure for file should support

* read(), write(), bulk read

* at random location, e.g. head, tail, lseek

� Choices: data-structure from 1902/3321

* Linear arrays or lists

* trees - (binary or nry), balanced?, fixed depth?

� Unix Data-structure to search file blocks

* Unbalanced tree of depth 3

* Trade-of between small and large files

* Interesting exercise 3.3 (pp. 87)

� Q? How will one get first byte? last byte? Nth byte?

� Compare this data-structure to balanced trees of arbitrary depth.

* Maximum file sizes

* Complexity of adding information at end/start

− 10 −

3.2 Disk structures: directory entries

� 3.2.1 Directory = list of directory entries

* Directory entry = <filename, inode number>

- has variable size due to filenames

- Stored in a special file

 Compare and contrast inode and directory entries.

* Content

* fixed or variable lengths

* their storge containers

! Q? Why separate filenames from inodes?

* Can a file have multiple names?

* many dirctory entries? many inode numbers?

− 11 −

3.2 Disk structures: hard links

" Q? Why links?

* Alias, i.e. multiple names for a file

* Exercise 3.6 (pp. 95)

- Programs assume /usr/include/X11 for X header files

- but Solaris 2 uses /usr/openwin/share/include/X11

- Q? How can we port C programs using X to Solaris 2?

Q? What is a simple implementation?

* two directory entries sharing a inode

* Called Hard links!

* Example 3.7, Fig. 3.5 (pp. 91-92)

* Problem: inodes number - not unique across partitions

$ Q? what a is unique name across entire file system?

− 12 −

3.2 Disk structures: symbolic links

% Symbolic links

* content of file = pathname of real file

* Fig./Example 3.8 (pp. 94)

& Commands: ln , ln -s

ln file1 anotherLink

ln -s sLink file1

' Commands: rm (system call unlink())

* Remove a hard link,

- reduce hardlink reference count!

- remove file if count = 0.

* Example:

rm /dirA/file1

rm sLink

rm anotherLink

− 13 −

3.3 Memory data structres for open files

(3 Unix tables for managing files: (Fig. 3.11, pp. 100)

* OS kernel: (1) In-memory Inode table

- Caches inode information from disk structures

* OS kernel: (2) System open file table (SOFT),

- <file status flag, current offset, ptr to Inode entry>

- status flags = read, write, append, sync, nonblocking etc.

* Per process - (3) File descriptor table (FDT)

- <file descriptor flags, pointer to a SOFT entry>

- descriptor flags (0/1): 0 => close fd on exec()

) Why separate per process FDT from kernel SOFT?

* process specific I/O redirection

* Why separate SOFT from Inode table?

* Allow 2 processes to share a file and its buffer (e.g. pipe)

- 2 entries in SOFT - e.g. independent reading

- 1 entry in SOFT - share offset, e.g. DBMS logfile

− 14 −

3.3 Memory structres: Buffers

+ Why Buffer I/O ?

* Slow, high fixed overhead.

, Analogy: Suppose you eat one candy every day.

* Buying your favourite candy in Mall take 30 minutes

* Q? How often do we want to go to the Mall?

* Not often! Buy candy for a week in each visit!

- Buffer size , Buffering

* Buffer for disk I/O = a block, e.g. 4Kbyte

* Buffer for Keyboard/screen = line (i.e. carriage return)

* Process I/O request until buffer is full

* stderr is not buffered!

− 15 −

3.3 Memory structres: file handles

. File handles = logical names for device independent I/O

* returned by open("filename", ...)

* used by read/write/close to identify a file

* Types of handles: (1) file decsriptor, (2) file pointer

/ 3.3.1 File Descriptor = an index into FDT

* POSIX Include file: unistd.h

* Symbolic names: STDIN_FILENO, STDOUT_FILENO, ...

* System calls: open, close, read, write, ioctl

0 System call open() (specs on pp. 97)

* Usage Example 3.10 (pp. 98)

* Returns file descriptor

* Argument 1 : filename (string)

* Argument 2: oflag - permissions for user

- bit constants: O_RDONLY, OWRONLY, O_RDWR,

O_APPEND, O_NONBLOCK, ...

* Argument 3: fd_mode - permissions for group, other

- bit constants: Table 3.1 (pp. 99)

− 16 −

3.3 Memory structres: file handles

1 3.3.2 File Pointer = <file descriptor, memory buffer>

* Fig. 3.12 (pp. 102), Example 3.11 (pp. 101)

* ANSI C Include file: stdio.h

* Symbolic names: stdin, stdout, stderr

* library routine: fopen, fclose, fread, fwrite, fscanf, fprintf

* These call read()/write() in turn!

2 Should each fread/fwrite lead to system call read/write ?

* Additional Buffering is used to reduce system calls.

3 Note 2 kinds of buffers

* (A) Used by device (e.g. disk controller)

* (B) Used by ANSI C to reduce calls to read/write

4 Avoid additional buffering by ANSI C runtime

* fputs()

* stderr

− 17 −

3.3 Memory structres - Exercises

5 Ex.: Predict output of Examples 3.12, 3.13 (pp. 102-103)

6 Q?Which table (Inode/SOFT/FDT) entries has :

* process access permissions for a file

* memory buffer and next byte to be read/written

* owning user, pointers to disk blocks

7 What are the disadvantages of buffering?

* Revisit test for last bullet (Lab. 1, Section 2.12, pp. 70)

* lose data if system crashed before buffer is full

- System call fflush() to force I/O after write()

* Real-time I/O is harder

− 18 −

3.3.3 Memory structres and fork()

8 3.3.3 Inheritance of File Descriptors in fork()

* Child FDT is a copy of parent process FDT

* Share SOFT entries, i.e. file-offsets

- for files open at fork() time

- not for files opened after fork()

* Fig. 3.13 and 3.14 (pp. 105-6)

9 Exercise 3.11 (pp. 101)

* A process opens a file for reading and then forks.

* How do reads and writes by two process interact?

: Q? Are file pointers inherited?

* Are buffer contents inherited?

* Are buffer for files opened before fork shared?

− 19 −

3.4-5 Filters, Redirection, Pipes

; Benefits of device independent

< 3.4 Filter = program uses standard I/O for read/write,

- all parameters passed via command line args,

- Requires no user interaction,

- input data has no headers or trailers

* e.g. head, tail, more, sort, grep, awk

= I/O Redirection

* Shell symbols: >, <, >>, ...

* System call: dup2()

* Effect on per process FDT:

- FDT Index 0, 1, and 2 are for standard I/O

- These default to keyboard, terminal, terminal

- Redirection changes these entries to disk files

> Examples

* Figure 3.15 (pp. 107) - FDT for ’cat > my.file’

* Example 3.17 (pp. 108) - use of dup2()

− 20 −

3.4-5 Filters, Redirection, Pipes

? Pipe: A special type of file

* A communication buffer w/ file descriptors: fd0, fd1

* Unidirectional: Data written on fd1 is read from fd0

* first-in-first-out property

* Has no permanent name (Named pipes = FIFOs (sec. 3.9))

@ Use: let filters work together in a single command

* Command line: ls -l | sort -n +4

* ’ls’ and ’sort’ share a pipe, say <fd0, fd1>

* ’ls’ redirect its stdout to ’fd1’

* ’sort’ redirects its stdin to ’sort’

A System call: pipe()

* Example 3.20 (pp. 110-1) : Code showing use of

- pipe(), fork(), STDI/O redirections via dup2()

* Fig. 3.18-20 (pp. 111-2) show effects on FDTs

− 21 −

3.4-5 Filters, Redirection, Pipes

B Generalization of Pipes

* Pipes are very successful, i.e. widely used

* Named pipes

* Bidirectional pipes

* Communication across a network of machines

C 3.9 Named pipes, i.e. FIFOs

* first-in first-out files

* Create a fifo with a filename and permissions

* Persists after creator process exits

* Command/system call - mkfifo: Example 3.25, pp. 120

* Q? Name an advantage of FIFOs over pipes.

* Unrelated processes (non parent-child) can share it!

D Bidirectional: Data written on fd1 is read from fd0

- and data written on fd0 can be read from fd1

* See STREAMS in chapter 12.

E Network Communication

* sockets() are generalization of pipes

− 22 −

* Chapter 12 (Client-Server Communications)

− 23 −

3.6-8 File operations: blocking/non-blocking

F Blocking read/write is default, i.e.

- read() waits until input is available

* Not suitable for server processes (e.g. mail)

- which read from a ready file-descriptor among many

G System calls read() and write()

while ((br = read(from_fd, buffer, BLKSIZE) > 0)

if (write(to_fd, buf, bytesread) <= 0)

break;

H Non-blocking I/O

* Allow read() to return immediately

- if no input is available in buffer

* System calls fcntl() - Ex. 3.22 (pp. 116)

if (fnctl(fd, F_GETFL, 0) == -1)

perror("Could not get flags for fd");

else{ fd_flags |= O_NONBLOCK;

if (fnctl(fd, F_SETFL, fd_flags) == -1)

perror("Could not set flags for fd");

}

I Alterntive system call - select()

