
Overview

� Administrative

* HW 1 grades

* HW 2 Due

� Topics

* 5.1 What is a Signal?

* 5.2-3 Dealing with Signals - masks, handlers

* 5.4 Synchronization: pause(), sigsuspend()

* 5.6 Interaction with other systems calls

* problems with signals for communications

* 5.7-9 Rest of signals

� Readings: Ch. 5. (p. 167-204)

− 2 −

What is a Signal?

� Motivation

* Get immediatereal-time attention, ˆC and infinite loop

* Increase concurrency, e.g. disk controller, CPU

* Attend to unpredictable events, e.g. errors

- But, Asynchronous = Hard to understand

� Signals

* Software notification of an event to a process

* Lifecycle: event

- generate signal

- OS queues blocked one, delivers others to the process

- Process catches it and executes its handler

− 3 −

5.1 Value Domain for Signals

� Symbolic Names for Signals (Tables 5.1-2, pp. 170-1)

* Defined in signal.h, example of required ones

* SIGKILL - terminate

* SIGFPE - error in arithmetic or divide by zero

* SIGSEGV - invalid memory address

* SIGINT - interactive attention signal (e.g. ˆC)

� Generating Signals by command line’:

* ˆC (SIGINT) or ˆ| (SIGQUIT)

* Q? How to determine SIGINT character on your terminal?

* stty -a | grep intr ; stty -a | grep quit (pp 174)

kill -s signal pid, Ex. Kill -INT 3423

kill -l [exit_status] # list names of signals

kill [-signal] pid

− 4 −

5.1 Value Domain for Signals

� Generating signals by System calls:

int kill(pid_t pid, int sig);

* (Pid > 0)

- Send signal to process pid

* (Pid < 0)

- Send signal to process group id = |pid|

* (Pid = 0)

- Send signal to process group of sender

* Returns 0 on success

- Returns -1 if User-id of caller and receiver differ

� System call:

int raise(int sig);

unsigned int alarm(unsigned int seconds); /* SIGALARM */

	 Example Code Segment:

#include signal.h

kill(3423, SIGKILL);

raise(SIGUSER1)

alarm(10);

for(; ;) { }

− 5 −

Exercises on "What is a Signal?"

 Q? Compare signals and pipes for coomunication b/w processes P1

& P2

* relationship b/w P1, P2

* bandwidth

* possibility of blocking

* buffer size

� Q? Classify signals into synchronous and asynchronous ones:

* timer expiry, file does not exist, mouse click

* end-of-file found, ˆC on keyboard,

� Q? Which tasks can signals be used for?

* Exception handling, e.g. bad pointer, divide by 0

* Process termination in abnormal circumtances

- parent terminates a child process

- a child process terminates its parent

* Process notification of asynchronous events

- e.g. I/O complete, timer expiration

* Interprocess communication (message passing)

* Emulation of multitasking

− 6 −

Dealing with Signals

 What can a process do with signals?

* block for a while: postpone delivery

* ignore signals as if they never arrived

* handle signal- set up a routine to be called

- whenever s particular signal arrives

� Implementation of Process preferences

* Signal mask

* Table mapping signal-type to handler

� Signal Mask = list of currently blocked signals

* Changed by sigprocmask()

� Signal Handler

* A user defined procedure or "SIG_DFL" or "SIG_IGN"

* "SIG_IGN" will throw it away with no queueing

* Installed via sigaction()

* Invocation: implicit at signal delivery to process

− 7 −

5.2 Handling Signals - masks

� Signal Mask = list of currently blocked signals

* Blocked signals are queued, i.e.not lost

� Create a signal-mask : system calls (pp. 175)

- return 0 if successful, -1 on error

int sigemptyset(sigset_t *set); /* no signal */

int sigfillset(sigset_t *set); /* all signals */

int sigaddset(sigset_t *set, int signo);

int sigdelete(sigset_t *set, int signo);

int sigismember(const sigset_t *set, int signo);

- Return 1 if member, 0 otherwise

� Example 5.8 (pp. 175)

* Create a mask with 2 signals

− 8 −

Dealing with Signals - mask

� Change signal mask for a process:

* - examine or modify signal mask

* - add/delete a set of signals

* - union of two blocked sets

� sigprocmask(), pp. 176

* Parameter 1: how, i.e. add/delete/assignment

* Parameter 2: new sigset_t

* Parameter 3: old sigset_t

� Example 5.9 (pp. 176)

* Add SIGINT to blocked set of signals

* Simple usage

� Example 5.12 (pp. 178)

* Typical use of blocking - protect crucial sections!

* signals are masked during fork()

� Alternative: sigaction() as shown later

− 9 −

Dealing with Signals - mask

� Which is closer to maksing signals?

* Telephone: block calls from certain numbers

- calls are lost

* Post Office: place a hold on delivery for a few days

- mail delivery is postponed but mail is not lost.

� Masks and fork()

* Is fork() signal safe?

* Does child process inherit mask of parent?

* Does a child share mask with its parent?

* Can a parent process change masks for its child process?

� What can Masks be used for?

* Postpone signals of certain types

* Ignore signals of specific types

* Block signals from specific processes

− 10 −

5.3 Dealing with Signals - handler routines

� Handler is a C function / subroutine

* Returns no value

* Gets the signal number as input

* Asynchronous invocation

� Installing signal handlers: sigaction() - pp. 180

* Parameter 1: signal number

* Parameter 2: new handler structure

* Parameter 3: old handler structure

� Handler structure (struct sigaction)

* Field 1: pointer to handler function

- or SIG_DFL - default handler function

- or SIG_IGN - ignore signal, i.e do nothing

- Example 5.17 (pp. 182) - testing for ignored signal

* Field 2: mask

- additional signals to be blocked during

- execution of the signal handler subroutine

* Field 3: special flags (0 for now!)

- e.g. automtic restart of system call interuppted by signal

- in spec 1170 not in POSIX

− 11 −

Dealing with Signals - handler routines

� Example 5.13 (pp. 180)

* Install handler for SIGINT

 Example 5.15 (pp. 181)

char message = "I found ˆC 0 ;

void catch_ctrl_c(int signo); {

write(stderr, message, strlen(message));

}

struct sigaction act;

act.sa_handler = catch_ctrl_c;

sigemptyset(act.sa_mask);

act.sa_flags = 0;

if (sigaction(SIGINT, act, NULL) 0) { }

− 12 −

Exercises on Dealing with Signals

! Compare and contrast the following:

* (a) Postpone signals vs. Ignore signals

* (b) mask set by sigprocmask() vs. mask set by sigaction()

" Q? Is write() signal safe? (Table 5.3, pp. 191)

* Is fprintf() signal safe?

* Why use signal safe system calls within a handler?

How would one simulate the following policies for

- for signals arriving during execution of a handler:

* Telephone: call waiting

- attended to new signal immediately

* Telephone: disable call waiting w/ no voice mailbox

- new signals are lost

* Telephone: disable call waiting + voice mailbox

- new signals are saved for later processing

$ Compare the above policies for masking signal inside handlers.

* When would you use each policy?

− 13 −

Handling Signals- Process synchronization

% 5.4 Waiting for a signal

* Motivation: recall parent-child synchronization

* Chapter 2: exit() and wait()

* Chapter 5.4: kill() and pause()/sigsuspend()

& system call pause(); (pp. 182)

* wait till a unblocked signal comes

* Example 5.18 (pp. 183)

* Notice external variable signal_received

* signal must arrive during pause() to set signal_received

* window of vulnerability

- b/w testing of signal_received and call to pause()

' new system call sigsuspend(); (pp. 183)

* Closes window of vulnerability

* Atomic step to unblock signal and start wait

int sigsuspend(const sigset_t *sigmask);

/* unblocked signals (change mask) and wait for them */

(Example 5.20 (pp. 184)

* Wait for signal number signum

− 14 −

Exercises on Signals + Process synchronization

) Compare and contrast synchronization methods

* exit() - wait()

* kill() - pause()

* kill() - sigsuspend()

* Can the window of vulnerability for pause() be closed

- by masking signals during test of signal_received?

+ Analyze window of vulnerability for Ex. 5.20.

* Who sets signal_received to non-zero value?

* What is mask during sigsuspend()?

* What is mask during test (signal_received == 0)?

, Compare and contrast the following:

* mask set by sigprocmask()

* mask set by sigaction()

* mask set by sigsuspend()

− 15 −

5.6-7 Implications for System calls

- Interaction b/w signals and system calls

* Example 5.22 (pp. 189-90)

- Limit wait on input to 10 second

* restart the system calls interuppted by signals?

* non-reentrant system calls

. Restart issues

* Q? What happens if a process gets a signal

- while executing a system call?

* Interuptt "Slow" system calls

- e.g. terminal I/O has indefinite wait

- interuptted call return -1 with ’errno’ = EINTR

- program can restart te system if needed

* Other system calls are not interrupted

- e.g. disk I/O, getpid() - finite or no wait

/ Example 5.21 (pp. 189)

* while loop restarts read() if interuppted by signal

− 16 −

5.6-7 Implications for System calls

0 Non-reentrant system call issue

* Use of global data, e.g. errno, signal_received

* static data-structure - malloc(), free()

* executing 2 occurrence of subroutine => problems

* e.g. signal handler and main program

1 Async-signal safe function =

- can be called safely with a handler

* Does not use static data structures or malloc()

* Does not use global data in a non-entrant way

* Table 5.3 (pp. 191) lists async-signal safe system calls

− 17 −

5.6-7 Exercises on Implications for System calls

2 Q? Why following guidline for signal hanling? (pp. 190)

* explicitly restart system calls within a program

* use async-signal safe system calls within a handler

* block signals to prevent unwanted interactions

3 What are following? What are those used for?

- List a few system calls for operating on each.

* (a) signals, (b) masks, (a) candlers

4 Organizing the knowledge

* List the system calls and structures learned in ch. 5.

* Group these into C++/Java like classes

* Identify inheritance and part-of relationships

5 Q? Where does a program return to after executing handler

- for a signal arriving during a system call

* (1) next machine language instruction

* (2) next high-level language statement

* (3) end of current function or system call

* (4) end of current process (i.e. program)

− 18 −

Problems with communicating with signals

6 POSIX.1

* Lack of signals for application use

- only 2, ie SIGUSR1, SIGUSR2

* Lack of signal queueing

- 5 signals of same type during blocked period

- process may get 1 or 2 after unblocking

* Signal delivery order

- multiple pending signals -> no priority scheme

* Information content is minimal

- bit or an integer

* Asynchrony

- Must block signals during crucial sections

7 POSIX.4 real-time signals

* Address some of the problems

* queued, delivered in order, carry extra data

− 19 −

Rest of Signals

8 5.7 Explicit control of return place after handler

* System calls: Siglongjmp(), sigsetjmp() (pp. 192)

* Like "goto" and "set label" but

* Unravel function call stack properly!

* Ex. Program 5.2, pp. 192-3

9 5.8 Real-Time Signals (POSIX.1b)

: Expands ’sigaction’ structure

- with special member function ’sa_sigaction’

- Which takes 3 parameters: (a) signal number,

- (b) info structure = signal no., cause of signal, signal value

- (c) Context - no defined

- Cause of signal = user, queue, timer, asyncIO, mesgQ

- Signal Value allows an interger /pointer parameter to handler

; Ex. Program 5.4 (pp. 196)

< 5.9 Asynchronous I/O

aio.h, aio_read(), aio_write(), ...

