Overview

e Administrative
* HW 1 grades
* HW 2 Due
e Topics
* 5 1What isaSignal?
* 5.2-3 Dedling with Signals - masks, handlers

* 5.4 Synchronization: pause(), sigsuspend()

*

5.6 Interaction with other systems calls

*

problems with signals for communications

*

5.7-9 Rest of signals

e Readings. Ch. 5. (p. 167-204)

2

What isa Signal?

e Motivation
* Get immediatereal-time attention, “C and infinite loop
* |ncrease concurrency, e.g. disk controller, CPU

* Attend to unpredictable events, e.g. errors
- But, Asynchronous = Hard to understand

e Sgnals
* Software notification of an event to a process

* Lifecycle: event

generate signal

OS gueues blocked one, delivers others to the process
Process catches it and executes its handler

3

5.1 Value Domain for Signals

e Symbolic Names for Sgnals (Tables 5.1-2, pp. 170-1)
* Defined in signal.h, example of required ones
* SIGKILL - terminate
* SIGFPE - error in arithmetic or divide by zero
* SIGSEGV - invalid memory address

* SIGINT - interactive attention signal (e.g. "C)

e Generating Sgnals by command line':
* "C (SIGINT) or 7| (SIGQUIT)
* Q?How to determine SIGINT character on your terminal?

* &ty -a| grepintr ; stty -a| grep quit (pp 174)
kill -ssignal pid, Ex. Kill -INT 3423
Kill -1 [exit_status] # list names of signals
kill [-signal] pid

4

5.1 Value Domain for Signals

e Generating signals by System calls:
int kill(pid_t pid, int sig);

* (Pid >0)
Send signal to process pid

*

(Pid <0)

Send signal to process group id = |pid|
(Pid=0)

Send signal to process group of sender

*

*

Returns 0 on success
Returns -1 if User-id of caller and receiver differ

e Systemcall:

int raise(int sig);

unsigned int alarm(unsigned int seconds); /* SIGALARM */
e Example Code Segment:

#include signal.h

kill(3423, SIGKILL);

raise(SIGUSERL)

alarm(10);

for(;;){}

5

Exerciseson "What isa Signal ?"

e Q? Compare signals and pipes for coomunication b/w processes P1
& P2

* relationship b/w P1, P2
* bandwidth
* possibility of blocking
* buffer size
e Q7 Classify signals into synchronous and asynchronous ones:
* timer expiry, file does not exist, mouse click

* end-of-file found, "C on keyboard,

e Q7? Which tasks can signals be used for?
* Exception handling, e.g. bad pointer, divide by O

* Process termination in abnormal circumtances
parent terminates a child process
achild process terminates its parent

*

Process notification of asynchronous events
e.g. I/0 complete, timer expiration

* | nterprocess communication (message passing)

*

Emulation of multitasking

6

Dealing with Signals

e \What can a process do with signals?

*

block for awhile: postpone delivery

* ignore signals asif they never arrived

*

handle signal- set up aroutine to be called
whenever s particular signal arrives

e Implementation of Process preferences
* Signal mask
* Table mapping signal-type to handler

e Sgnal Mask = list of currently blocked signals
* Changed by sigprocmask()

e Sgnal Handler
* A user defined procedure or "SIG_DFL" or "SIG_IGN"
* "SIG_IGN" will throw it away with no queueing
* Installed via sigaction()

* Invocation: implicit at signal delivery to process

7

5.2 Handling Signals - masks

e Sgnal Mask = list of currently blocked signals

* Blocked signals are queued, i.e.not lost

e Create a signal-mask : system calls (pp. 175)
- return O if successful, -1 on error
int sigemptyset(sigset_t *set); /* no signa */
int sigfillset(sigset_t *set); /* al signals*/
int sigaddset(sigset_t * set, int Signo);
int sigdelete(sigset_t *set, int signo);
int sigismember(const sigset_t * set, int Signo);
- Return 1 if member, O otherwise

e Example 5.8 (pp. 175)

* Create amask with 2 signals

8

Dealing with Signals - mask

Change signal mask for a process.
* - examine or modify signal mask
* - add/delete a set of signals

* - union of two blocked sets

sigprocmask(), pp. 176
* Parameter 1. how, i.e. add/del ete/assignment
* Parameter 2: new sigset_t
* Parameter 3: old sigset_t
Example 5.9 (pp. 176)
* Add SIGINT to blocked set of signals
* Simple usage
Example 5.12 (pp. 178)
* Typical use of blocking - protect crucial sections!

* signals are masked during fork()

Alternative: sigaction() as shown later

9

Dealing with Signals - mask

e Whichiscloser to maksing signals?

* Telephone: block calls from certain numbers
calsarelost

* Post Office: place ahold on delivery for afew days
mail delivery is postponed but mail is not lost.

e Masks and fork()
* Isfork() signal safe?
* Does child process inherit mask of parent?
* Does achild share mask with its parent?

* Can a parent process change masks for its child process?

e \What can Masks be used for?
* Postpone signals of certain types
* |gnore signals of specific types

* Block signals from specific processes

10

5.3 Dealing with Signals - handler routines

e Handler isa C function / subroutine
* Returns no value
* Getsthe signal number as input

* Asynchronous invocation

e Installing signal handlers. sigaction() - pp. 180
* Parameter 1. signal number
* Parameter 2: new handler structure

* Parameter 3: old handler structure

e Handler structure (struct sigaction)

* Field 1: pointer to handler function

or SIG_DFL - default handler function

or SIG_IGN - ignore signdl, i.e do nothing
Example 5.17 (pp. 182) - testing for ignored signal

*

Field 2: mask
additional signals to be blocked during
execution of the signal handler subroutine

*

Field 3: special flags (O for now!)
e.g. automtic restart of system call interuppted by signal
in spec 1170 not in POSIX

11

Dealing with Signals - handler routines

e Example 5.13 (pp. 180)
* |nstall handler for SIGINT

e Example 5.15 (pp. 181)
char message="1 found "CO;

void catch_ctrl_c(int signo); {
write(stderr, message, strlen(message));

struct sigaction act;

act.sa_handler = catch _ctrl _c;
sigemptyset(act.sa_mask);

act.sa flags = 0;

If (sigaction(SIGINT, act, NULL) 0){ }

12

Exercises on Dealing with Signals

e Compare and contrast the following:

* (@) Postpone signals vs. Ignore signals

* (b) mask set by sigprocmask() vs. mask set by sigaction()
e Q7 Iswrite() signal safe? (Table 5.3, pp. 191)

* Isfprintf() signal safe?

* Why use signal safe system calls within a handler?

e How would one simulate the following policies for
- for signas arriving during execution of a handler:

* Telephone: call waiting
attended to new signal immediately

*

Telephone: disable call waiting w/ no voice mailbox
new signals are lost

* Telephone: disable call waiting + voice mailbox
new signals are saved for later processing

e Compare the above policies for masking signal inside handlers.

* When would you use each policy?

13

Handling Signals- Process synchronization

e 5.4 Waiting for a signal
* Motivation: recall parent-child synchronization
* Chapter 2: exit() and wait()
* Chapter 5.4: kill() and pause()/sigsuspend()
e system call pause(); (pp. 182)
* wait till aunblocked signal comes
* Example 5.18 (pp. 183)
* Notice external variable signal_received
* signal must arrive during pause() to set signal_received

* window of vulnerability
b/w testing of signal_received and call to pause()

e new system call sigsuspend(); (pp. 183)
* Closes window of vulnerability

* Atomic step to unblock signal and start wait
int sigsuspend(const sigset_t * sigmask);
* unblocked signals (change mask) and wait for them */

e Example 5.20 (pp. 184)

* Wait for signal number signum

14

Exercises on Signals + Process synchronization

e Compare and contrast synchronization methods
* exit() - wait()
* kill() - pause()
* Kill() - sigsuspend()

e Can the window of vulnerability for pause() be closed
- by masking signals during test of signal_received?

e Analyze window of vulnerability for Ex. 5.20.

* Who sets signa_received to non-zero value?

* What is mask during sigsuspend()?

* What ismask during test (signal_received == 0)?
e Compare and contrast the following:

* mask set by sigprocmask()

* mask set by sigaction()

* mask set by sigsuspend()

15

5.6-7 Implicationsfor System calls

e Interaction b/w signals and system calls

* Example 5.22 (pp. 189-90)
- Limit wait on input to 10 second

* restart the system calls interuppted by signals?

* non-reentrant system calls

e Restart issues

* Q?What happens if a process gets a signal
while executing a system call?

*

Interuptt "Slow" system calls

e.g. terminal I/O has indefinite wait
interuptted call return -1 with ’errno’ = EINTR
program can restart te system if needed

*

Other system calls are not interrupted
e.g. disk /O, getpid() - finite or no wait

e Example 5.21 (pp. 189)

* while loop restarts read() if interuppted by signal

16

5.6-7 Implicationsfor System calls

e Non-reentrant system call issue
* Useof global data, e.g. errno, signal_received
* dtatic data-structure - malloc(), free()
* executing 2 occurrence of subroutine => problems

* e.g. signa handler and main program

e Async-signal safe function =
- can be called safely with a handler

* Does not use static data structures or malloc()
* Does not use global datain a non-entrant way

* Table 5.3 (pp. 191) lists async-signal safe system calls

17

5.6-7 Exerciseson Implicationsfor System calls

e Q? Why following guidline for signal hanling? (pp. 190)
* explicitly restart system calls within a program
* use async-signal safe system calls within a handler

* block signals to prevent unwanted interactions

e \What are following? What are those used for?
- List afew system calls for operating on each.

* (@) signals, (b) masks, (a) candlers

e Organizing the knowledge
* List the system calls and structures learned in ch. 5.
* Group these into C++/Javalike classes

* |dentify inheritance and part-of relationships

e Q? Where does a program return to after executing handler
- for asignal arriving during a system call

* (1) next machine language instruction
* (2) next high-level language statement
* (3) end of current function or system call

* (4) end of current process (i.e. program)

18

Problemswith communicating with signals

e POIX.1

* Lack of signalsfor application use
only 2, ie SIGUSR1, SIGUSR2

*

Lack of signal queueing
5 signals of same type during blocked period
process may get 1 or 2 after unblocking

*

Signal delivery order
multiple pending signals -> no priority scheme

*

Information content is minimal
bit or an integer

*

Asynchrony
Must block signals during crucial sections

e POSX.4 real-time signals
* Address some of the problems

* queued, delivered in order, carry extra data

19

Rest of Signals

e 5.7 Explicit control of return place after handler
* System calls: Siglongimp(), sigsetjmp() (pp. 192)
* Like"goto" and "set label" but
* Unravel function call stack properly!

* EX. Program 5.2, pp. 192-3

e 5.8 Real-Time Sgnals (POS X.1b)

e Expands’sigaction’ structure

with special member function 'sa_sigaction’

Which takes 3 parameters. (a) signal number,

(b) info structure = signal no., cause of signal, signal value
(c) Context - no defined

Cause of signal = user, queue, timer, asynclO, mesgQ

Signal Value allows an interger /pointer parameter to handler

e EXx. Program5.4 (pp. 196)

e 5.9 Asynchronous I/O

alo.h, aio_read(), aio_write(), ...

