
Overview

� Administrative

* HW 2 Grades

* HW 3 Due

� Topics:

* What are Threads?

* Motivating Example : Async. Read()

* POSIX Threads

* Basic Thread Management

* User vs. Kernel Threads

* Thread Attributes

� Readings: Chapter 9 (pp. 333-364)

� Exercises: 9.1 - 9.3

− 2 −

What are Threads?

� Thread of execution in a program:

* Flow of Control for a process

* Sequence of instruction executed by CPU for a process

� Ex 9.1: (pp. 333)

* process A executes statements a5, a6, a7 in a loop

* process B executes statements b2, b3, b4, b5 in a loop

* P1 sees 1 thread: a5, a6, a7, a5, a6, a7, ...

* P2 sees 1 thread: b2, b3, b4, b5, b2, b3, b4, b5, ...

* CPU and OS see interleaved threads from P1 and P2,

- e.g. a5, a6, b2, b3, b4, b5, b2, a7, a5, b6, ...

� Q? Why not a user process w/ multiple threads ?

* Multiple blocking I/O channels (e.g. sockets)

* Responsive user interfaces

* Server program handling concurrent requests

* Simplify writing parallel programs

* Programs using multi-processor machines

− 3 −

Hello World with 2 Processes

� Example with Processes (w/o synchronization)

void print_message_function(void *ptr);

main()

{

pid_t process1, process2;

char *message1 = "Hello";

char *message2 = "World";

if ((process1 = fork()) == 0) {

print_message_function(message1);

exit(0);

} if ((process2 = fork()) == 0) {

print_message_function(message2);

exit(0);

}

/* wait() for children to finish */

}

void print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s ", message);

}

− 4 −

Hello World with 2 Threads

� Example with Threads (w/o synchronization)

void print_message_function(void *ptr);

main()

{

pthread_t thread1, thread2;

char *message1 = "Hello";

char *message2 = "World";

pthread_create(&thread1, pthread_attr_default,

(void*)&print_message_function, (void*) message1);

pthread_create(&thread2, pthread_attr_default,

(void*)&print_message_function, (void*) message2);

exit(0);

}

void print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s ", message);

}

− 5 −

Threads vs. Processes

	 Concurrent Program architecture

* Cooperating group of processes

* Group of threads within a process

* Mixed

 Processes as units of concurrent execution

* +Security: a buggy process won’t affect other processes

- Example: unix shell

* +Pipes: Simple synchronization

* - Slow Shared Synchronization variables (Ch. 8)

* - High costs: memory, creation, context switch...

* - Severe limits on number of processes (concurrency)

� Threads

* Share code and data across all threads

* Reduce context switches overheads

* Faster creation, synchronization: Table 9.2 (pp. 360)

* - Shared memory => race conditions

* - Weak security boundaries

− 6 −

9.1 A Long Example

� Problem: Monitoring multiple file descriptors

* No order on arrival of input across channels

* Non-blocking read()

 Alternative Solutions:

* 9.1.1 non-blocking read() with polling

* 9.1.2 asynchronous I/O with signal

* 9.1.3 ’select’ statement

* 9.1.4 system call ’poll()’

* 9.1.5 Threads

− 7 −

9.1.5 Monitoring I/O channels

� poll_and_process(int fd)

* Program 9.1 (pp. 36)

* Called for each file descriptor

* By most solutions

* Error handling is complex

- -1 => error, no input, signal

- check errno for EINTR, EAGAIN

� Simple solution: non-blocking I/O

* Program 9.2 (pp. 336-7)

* Get filenames from command line

* Open two file descriptors w/ O_NONBLOCK

* While loop to poll file descriptors

� Comments - Busy waiting

* - Single thread of control

* - Long request delays other requests

− 8 −

9.1.5 Monitoring I/O channels w/ Signals

� Signal based solution - no busy wait

* Program 9.3 (pp. 348-350)

* Use SIGPOLL signal to communicate b/w

- device driver and the main() program

* SIGPOLL blocked except during sigsuspend()

� Strategy

* Open file descriptors for non-blocking I/O

* Block SIGPOLL signal

* Install signal handler for SIGPOLL

* Signal handler flags arival of SIGPOLL

- via a global variable

- Recall Example 5.20 (pp. 184, sigsuspend())

* Ask device driver to send SIGPOLL signal

- ioctl() with I_SETSIG flag

* Loop on { polling and sigsuspend() }

� Comments: - Complex logic

* - Single thread of control

* - Long request delays other requests

− 9 −

9.1.5 Monitoring I/O channels w/ Threads

� Thread based solution - Program 9.7 (pp. 347)

* monitor_fd(fd_array[], num_fd)

* multiple threads

* Assign a file descriptor to each thread

- function process_fd()

* Ensure no conflict in FDT, file descriptors, ...

* Wait for threads to finish

� Program 9.6 - Details of process_fd()

* Get file descriptor as argument

* infinite loop over

- blocking read from file descriptor

- process command

� Comments: - Simple logic

* - Long request don’t delay other requests

* - No busy wait

− 10 −

Threads vs. Procedures

� Both share global variables and heap

� Procedures without threads

* Decompose source code into procedures

* Example Program 9.3 (pp. 344)

* Single Thread of control: Figure 9.1 (pp. 345)

* Single stack of activation records

* A blocking I/O in a procedure

- may halt entire process

� Threads

* Each thread executes a procedure

* Example Program 9.4 (pp. 346)

* Multiple threads active - Figure 9.2 (pp. 345)

* A blocking I/O in a thread

- does not halt entire process

* Program 9.7 (pp. 346-7)

- Note: "process_fd()" uses blocking read

− 11 −

9.2 POSIX Thread Abstract Data Type

� Abstract Data Type = <Attributes, Operations>

* Examine Fig. 2.1 (pp. 32) and identify

- What’s unique to a thread of execution in a process?

* execution stack, register set, PC, state

* Share- code, heap, global data, environment, pid, ...

� Attributes

* Stack size

* Stack Address

* Scope

* Schedule Policy

* Schedule Parameters, e.g. thread priority

� Operations : See Table 9.3 (pp. 360)

* Initialization

* Detach State

* Inherit Schedule

* Get/Set Attributes

− 12 −

9.4 User vs. Kernel Threads

� Thread Implementations

* OS Kernel level

* User level

� User Level Threads

* Threads within a process

* Compete among each other for process resouces

* Scheduled by a run-time library linked to process code

* A blocking system call by a thread can block other threads,

* So these calls may be postponed

* + Low overhead

* - Has limited resources

* - Run-time library must get control periodiclly for scheduling

* --> complex code for threads

− 13 −

9.4 User vs. Kernel Threads

� Kernel Level Threads

* Threads are visible to OS Kernel

* Threads complete for system wide resources

* Can take advantage of multiple processors

* More expensive than user level threads

* Scheduling can be as costly as process scheduling

* See Table 9.2 (pp. 360) for comparison!

 Hybrid Model: (Fig 9.5, pp. 359)

* User writes programs interms of user level threads

* And specified number of kernel-level threads

* User level threads are mapped to kernel level threads

− 14 −

9.3 POSIX Threads: system calls

! Thread Package Has

* A runtime library to manage thread ADTs

* In a user transparent manner

* Has calls to create, delete, synchronize

* Calls return 0 if and only if successful

* Table 9.1 (pp. 348) illustrates two pakages

" Support dynamic threads

* Can be created at any time during execution

* Number of threads not specificed in advance

− 15 −

9.3 POSIX Threads: system calls

pthread_create()

* Create a thread to execute given function

* Example 9.4 (pp. 346)

* Synopsis: pp. 349

* Parameter1: thread id

* Parameter2: thread attribute object

- NULL => default values

* Parameter3: function to be executed by thread

- retriction: 1 argument (* void), returns (* void)

- retriction similar to signal handler

* Parameter4: the argument to the function

* Returns: error code

− 16 −

9.3 POSIX Threads: system calls

$ Simulate procedure-call synchronization

* pthread_exit() - pthread_join() pair

* Can exchange data between threads!

* Recall process system calls

- exit(status) - wait() synchronization

% pthread_exit()

* Terminate the calling thread

* Takes an agument (void *)

- for return value via pthread_join()

& pthread_join()

* Wait for specific child thread

* Arguments1: thread id to wait on

* Arguments2: result from thread waited on

- e.g. "errno" my be returned by thread

− 17 −

9.3 POSIX Threads: system calls

' Example: Copying multiple files

* Program 9.9 (pp. 351-2)

* Exercise 9.1 , 9.2(pp. 353)

* Exercise 9.3 (pp. 355)

(pthread_self()

* Find your own thread_id

) Synchronization Issues (Chapter 10)

* Changing values of shared data, e.g. reference parameter

* System calls should be thread-safe (i.e. no thread-switching)

− 18 −

9.5 Thread Attributes

* Recall Thread Attributes

* Stack size

* Stack Address

* Scope

* Schedule Policy

* Schedule Parameters, e.g. thread priority

+ Reading/Writing attributes

* Example: priority of a thread

* Example 9.6 (pp. 362)

