
Csci 4061 - Last Meeting

� Administrative

* Any questions on practice final

* Final Exam. - stuents w/ conflict

- Pl. oyour namesde info. on the signup!

* Recitation Schedule:

- HW 5 grades, grade record verification

- Another Practice Exam.

� Discussion:

* Final Exam. details

* Summarize the course

− 2 −

Final Exam.

� Basic Information

* Place: Classroom

* Time: 1830-2030, Mon 12/20/99 (eve. Sec.)

* Time: 1030-1230, Tues. 12/21/99 (day sec.)

� Nature

* Open book, man-pages, classnotes

* Closed neighbors, computers etc.

* Syllabus: Chapters 1, 2, 3, 5, 9, 10, 12

− 3 −

Final Exam.

� Nature

* Problem solving - calculate file sizes, etc.

* Analysis - output for a given program

* True/False

* Match items from two tables

* Few definitions, comparisons, discussions

� Practice Exam. this Wednesday in recitation

� A Note on True/False Questions

* Justifications are more important !

* Absolute truth is not being looked for.

* Ex. UICI uses private channels ...

- Each connection request results in a new channel

- But fork() by client after u_connect ...

− 4 −

Final Exam. Details

� Details - Important System Calls

* Ch. 1.: perror, strerror

* Ch. 2.: getpid, getppid, getenv, setsid

- fork, exit, wait, waitpid, execl

* Ch. 3.: getcwd, chdir, opendir, readdir, closedir

- status, open, read, write, close, dup2, pipe

* Ch. 5.: kill, raise, alarm,

- sigprocmask, sigaction, pause, sigsuspend

- (sigempty, sigfillset, sigaddset, sigdelset, sigismember)

− 5 −

Final Exam. Details

� Details - calls from ANSI C Standard Libraries

* C Memory Management: malloc, free

	 Details - Important Shell symbols and Commands

* Ch. 1.: man, make, cc,

* Ch. 2.: ps, env, &, bg, fg,

* Ch. 3.: cd, ls, find, ln, |, <, >, >>,

* Ch. 5.: kill, intr (ˆC)

− 6 −

Final Exam. Details

 Details - Important System Calls

* Ch. 9.: pthread_create/exit/kill/join

* Ch. 10.: pthread_mutex_init/destroy/lock/unlock/trylock

- sem_init/destroy/wait/post/trywait (Ch. 8.3)

- pthread_kill, pthread_sigmask, sigwait

* Ch. 12.: u_open/close/listen/connect/read/write

- socket, bind, listen, accept, connect, read, write

− 7 −

Final Exam. Details

� Details - Important Concepts

� Chapter 9

* Client request processing architecture for Servers

- serial vs. multi-threaded vs. multi-processes

* thread properties

* thread implementations: user-level, kernel-level

 Big picture issues

* threads vs. procedures

* threads vs. processes

− 8 −

Final Exam. Details

� Details - Important Concepts

� Chapter 10

* Race conditions in MT programs

* Synchronization methods

- locks, semaphores, condition variables

* Threads and signals

- synchronous, asynchronous, directed signals

- signal handling in Multi-Threaded programs

� Big picture issues

* pthread_join vs. other synchronization methods

* disjoint address space as a synchronization method

* thread-safety vs. signal-safety vs. reentrant

− 9 −

Final Exam. Details

� Details - Important Concepts

� Chapter 12

* Client, server, naming, communication

* Naming: host, port

* Communication: connection-less vs. connection based

* UICI vs. Sockets

* Communication architectures for Servers

� Big picture issues

* Formats: Little-Endian vs. Big-Endian

* Naming: port vs. process-id/thread-id

* UICI channels vs. pipes (chapter 3)

− 10 −

Course Summary

� Goals: Understand concurrency

* Why concurrency?

* Sources of Concurrency

- I/O, signals, processes, threads, client-server

* Effects of concurrency

- race conditions

� Focus

* Server - software concurrently shared by many

* User level - commands, shell

* Power Users - system calls, C programs

� Out of Scope

* Operating System Theory - e.g. CPU scheduling

* Vendor specific features - e.g. Win32

− 11 −

Unix Standards

� Why Standards?

* Multiple flavours of Unix: HPUX, Solaris, Linux, ...

- Two distinct lineage - BSD and System V

* Non-Unix OS: NT, Windows 3.1/95/98/..., MacOS, ...

* System calls are often OS specific!

* Overhead of porting across OS.

� Which Standards?

* ANSI C

* POSIX - IEEE Portable Operatig System Interface

- Table 1.3 provide POSIX standards

* if not covered by POSIX

- Spec 1170

- System V Release 4

� Q? Did we study any non-POSIX systems calls/concepts?

− 12 −

What is Concurrency?

� Concurrency:

* Sharing of resource in the same time-frame

* Ex. two program executing concurrently

* Q? Which resources are they sharing?

� What is hard about Concurrency?

* Race conditions

* Non-deterministic behaviour

* Bugs do not show up on a regular basis

� Trends leading to Concurrency

* Servers - Web, DBMS, Mail, ...

* Graphical User Interfaces

- Animation of multiple objects

* Multiprocessors

* Distributed Systems, e.g. internet

− 13 −

What is Hard about Concurrency?

� Shared functions/libraries

* should be safe for reentry

� Non-Reentrant functions

* Self modifying code

* functions using static/global variables

* Problems with multiple simultaneous invocations

� Reentrant functions

* Allow multiple simultaneous invocations

* Needed for signal handler, server with many clients, ...

* Two aspects -

- Thread safe: can be called concurrently by 2 threads

- Async. Signal safe: can be called inside a signal handler

- without restriction

 Q? Compare signal-safe (SS) and thread-safe (TS).

* Provide a function which TS but not SS.

− 14 −

Units of Concurrency

! Process: (Ch. 2)

* instance of a program in execution

* multiple processes on one machine

" Procedures (Ch. 3, 5)

* system call, e.g. asynchronous I/O vs. computing

* signal handlers

Threads within a process: (Ch. 9, 10)

* finer granualarity

* Share code, heap, globals

$ Communication (Ch. 12)

* processes across network (Client-server)

− 15 −

Ch. 2: Processes

% Motivation

* Structure real-time program with multiple tasks

& Process: a program in execution

* Attributes: pid, ppid,

* Operations: fork, exit, join, wait, ...

' Implementation Details

* States: new, running, blocked, ready, done

* Layout: Code, global data, heap, stack, env.

(Cooperating Processes

* Parent - child relationship

* exit() - wait() coordination

) Background Processes, Daemon processes

− 16 −

Ch. 3. Input and Output

* Motivation

* Coordinate resources with varying speed

* Why should an application developer learn this?

* You may develop performance critical applications

- Ex. real-time - Pacemaker

- Ex. Web servers, transaction processors - ebay, amazon, ...

+ Ex. asynchronous I/O

* A process itseld can do other things

* while waiting for an I/O, i.e. synchronous read()

* instead of getting swapped out by OS

, Ex. monitoring multiple input source on network

* Standard blocking I/O is not suitable!

- Concurrency

* Subprogram handling file/network I/O

* Subprograms computing during wait for I/O

− 17 −

Ch. 5. Signals

. Motivation

* Q? How do you stop a program in an infinite loop?

* Other usage: timers, job control, aynch. I/O, ...

/ Signal = software notification of an event

* Ex. hardware events, e.g. ctrl-c, I/O complete

* Q? Provide examples of synchronous signals.

0 Life cycle of a Signal

* Event of interest occurs

* Signal is generated

* OS sets a flag for the relevant process

* Signal is caught by the process

* Process invokes a handler subroutine

* Analogy - "You have mail" flag

1 Concurrency: main program, signal handler subroutine

* Implication: restriction on signal handler

* Sharing a global variable => special protection

− 18 −

Ch. 9. Threads and Resource Sharing

2 Motivation - What is the unit of concurrency?

* Traditional unit = process

* Emerging finer unit = thread

3 Processes - Generated via fork() call

* Coordinate termination via wait()

* Communicate via pipes (common ancestors),

- or signals, messages, shared memory, etc.

* Pros: stronger security boundaries

* Cons: high overhead

4 Threads - provide concurrency within a process

* threads of execution = program counter value streams

* Finer level of concurrency

* Low overhead in creating and context switching

* standards are emerging now!

5 Concurrency

* Multiple processes or Multiple threads within a process

− 19 −

Ch. 12. Network as the Computer

6 Motivation - internet!, intranet, networks, ...

* Multiple services: ftp, email, ...

* Million of clients accessing Web services

7 Client-Server = A model of distributed computing

* Client = caller of a service

* Server = provider of a service

* Analogy with procedure call, caller, callee

8 Details

* Clients and Servers may be on different machines

* Communication via messages or remote procedure calls

* Signals, Pipes, shared memory are not common

9 Concurrency

* Server and client are concurrent

* Multiple Servers and multiple clients

