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Abstract

Spatial data mining is a process to discover interesting
and potentially useful spatial patterns embedded in spatial
databases. Efficient tools for extracting information from
spatial data sets can be of importance to organizations
which own, generate and manage large geo-spatial data
sets. The current approach towards solving spatial data
mining problems is to use classical data mining tools
after ”materializing” spatial relationships and assuming
independence between different data points. However,
classical data mining methods often perform poorly on
spatial data sets which have high spatial auto-correlation. In
this paper we will review spatial statistical techniques which
can effectively model the notion of spatial-autocorrelation
and apply it to the problem of predicting bird nest locations
in a wetland.

Keywords: Spatial data mining, spatial auto-
correlation, spatial autoregression.

1 Introduction

Widespread use of spatial databases [9, 19] is leading
to an increasing interest in mining interesting and use-
ful but implicit spatial patterns[11, 14, 17]. Efficient
tools for extracting information from spatial data, the
focus of this work, are crucial to organizations which
make decisions based on the analysis of large spatial
data sets. These organizations are spread across many
domains including ecology, environment management,
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public safety, transportation, public health, business lo-
gistics, travel and tourism. Classical data mining al-
gorithms [7] often make assumptions(e.g. independent
distributions) which violates the first law of Geogra-
phy: everything is related to everything else but nearby
things are more related than distant things [18]. In
other words, the values of attributes of nearby spatial
objects tend to systematically affect each other. In spa-
tial statistics, an area within statistics devoted to the
analysis of spatial data, this property is called spatial
autocorrelation [4]. Knowledge discovery models which
ignore spatial autocorrelation typically perform poorly
in the presence of spatial data. In this paper we will
review techniques from spatial econometrics which take
the special properties of spatial data into account. In
particular we will show how logistic regression can be
generalized to model spatial autocorrelation. We will
also make a case for the need for a new measure of spa-
tial classification accuracy.

1.1 An Illustrative Application Domain

The availability of accurate spatial habitat models is
an important tool for wildlife management, protection
of critical habitat and endangered species. Since the
underlying process governing the interaction between
wildlife and environmental factors is complex, statistical
techniques are used to gain insight on the basis of data
collected during field work. One of the authors has been
involved in the development of spatial model for the
nesting locations of a marsh-nesting bird species [15,
16]. We will use this application, and the accompanying
data, to explain how logistic regression can be extended
to incorporate spatial autocorrelation.

The learning and test datasets were collected in 1995
and 1996 from two wetlands(Darr and Stubble) located
on the shores of Lake Erie in Ohio. A uniform grid was
imposed on the wetlands and in each cell the values
of several structural and environmental factors were
recorded, including water depth, dominant vegetation
durability index and distance to open water. These three
factors play the role of most significant explanatory
variables. At each cell was also recorded the fact
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Figure 1: (a) Learning dataset: The geometry of the wetland and the locations of the nests, (b) The spatial
distribution of vegetation durability over the wetland, (¢) The spatial distribution of water depth, and (d) The spatial

distribution of distance to open water.

whether a bird-nest was present or not. The presence
of the nest played the role of dependent variable. The
geometry of the Darr wetland, locations of the nests
and spatial distribution of the explanatory variables are
shown in Figure 1. Classical data mining techniques
like logistic regression[16] and neural networks[15] were
applied to build spatial habitat models. Using logistic
regression the nests could be classified at a 24% rate
better than random. The use of neural networks
actually decreased the classification accuracy but led
to a better understanding of the interaction between
the explanatory and the dependent variable.

Detailed discussions among authors reveal an impor-
tant reason why, despite extensive domain knowledge,
the results of classical data mining are not “satisfac-
tory”. Classical techniques make assumption about
identical independent distribution(i.i.d.) for the proper-
ties of each pixel, ignoring spatial autocorrelation. Fig-
ure 2(a) shows a spatial distribution consistent with the
assumptions of classical regression. It looks like “white
noise” as properties of pixel are generated from indepen-
dent identical distributions. Note that the maps of ex-
planatory variable in Figure 1 have much more gradual
variation indicating high spatial autocorrelation. Fig-
ure 3(b) shows a random distribution of nest locations
which is quite different from the distribution of actual

nests shown in Figure 1(a).

1.2 Spatial Data Mining: Problem

Formulation

Predicting nest locations is a special case of a two-class
spatial classification problem which we formally define
as follows:

Given :

e A spatial framework S consisting of sites {s1,... ,8n}

for an underlying geographic space G.

e A collection of explanatory functions fx, : S —
R¥ k=1,... K. RFis the range of possible values
for the explanatory functions.

e A dependent function fy : S - RY

e A family F of learning model functions mapping
R' x...RK - RY.
Find : A function fY € F.
: maximize classification_accuracy( fY, Iy)

Objective

Constraints :



(a) pixel property with i.i.d

(b) Random nest sites

Figure 2: Spatial distribution satisfying distribution assumptions of classical regression

1. Geographic Space S is a multi-dimensional Eu-
clidean Space !.

2. The values of the explanatory functions, the
fx,’s and the response function fy may not be
independent w.r.t those of nearby spatial sites,
i.e. spatial autocorrelation exists.

3. The domain RF of the explanatory functions is
the one-dimensional domain of real numbers.

4. The domain of the dependent variable, RY =

{0,1}.

1.3 Related Work

Related work includes spatial statistics and spatial data
mining.

Spatial Statistics: The goal of spatial statistics
is to model the special properties of spatial data.
The primary distinguishing property of spatial data is
that neighboring data samples tend to systematically
affect each other. Thus the classical assumption that
data samples are generated from independent and
identical distributions is not valid. Current research
in Spatial Econometrics, Geo-statistics and Ecological
modeling [2, 13, 8] has focused on extending classical
statistical techniques in order to capture the unique
characteristics inherent in spatial data.

Spatial Data Mining: Spatial data mining [6,
10, 11, 12, 17], a subfield of data mining [1, 7], is
concerned with discovery of interesting and useful but
implicit knowledge in spatial databases. Challenges in
Spatial Data Mining arise from the following issues.
First, classical data mining[1] deals with numbers and
categories. In contrast, spatial data is more complex
and includes extended objects such as points, lines, and
polygons. Second, classical data mining works with
explicit inputs, whereas spatial predicates (e.g. overlap)
are often implicit. Third, classical data mining treats
each input to be independent of other inputs, whereas
spatial patterns often exhibit continuity and high

IThe entire surface of the Earth cannot be modeled as a
Euclidean space but locally the approximation holds true.

autocorrelation among nearby features. For example,
population density of nearby locations are often related.
In the presence of spatial data the standard approach
in the data mining community is to materialize spatial
relationships as attributes and rebuild the model with
these "new” spatial attributes [12, 11].

1.4 Scope of Paper and Outline

The primary focus of this paper is to review techniques
which generalize logistic regression to model the special
properties of spatial data, namely spatial autocorrela-
tion. Using the “bird-nesting” example introduced in
Section 1.1 we will show that models which take spatial
autocorrelation into account perform uniformly better
than classical models. We will also make a case for a
new measure for spatial classification accuracy which
we believe is more suited to capture the special seman-
tics of spatial data. The rest of the paper is as follows.
In Section 2 we briefly describe the logistic regression
model and highlight its key limitation for modeling spa-
tial data. We will also introduce a statistic which quan-
tifies the notion of spatial autocorrelation. In section 3
we will show how regression techniques can be general-
ized to model spatial aucorrelation. We also list some
of the key advantages of doing so. In Section 4 we carry
out experiements on the bird data set to compare the
learning and predictive power of classical and spatial
logistic regression. We conclude in Section 5 by making
an argument for a new measure of spatial classification
accuracy.

2 Basic Concepts: Modeling Spatial
Dependencies
2.1 Logistic Regression Modeling
Given an n—vector y of observations and an n x m
matrix X of explanatory data, classical linear regression
models the relationship between y and X as
y=X[+e.

Here X = [1,X] and 8 = (Bo,...,0m)t. The
standard assumption on the error vector € is that each



component is generated from an independent and and
identical and normal distribution, i.e, ¢, = N(0, o2).
When the dependent variable is binary, as is the case
in the “bird-nest” example, the model is transformed
via the logistic function and the dependent variable is
interpreted as the probability of finding a nest at a

given location. Thus, Prob(y = 1) = %. This
transformed model is referred to as logistic regression.
The fundamental limitation of classical regression
modeling is that it assumes that the sample observa-
tions are independently generated. This may not be
true in the case of spatial data. As we have shown in
our example application, the explanatory and the in-
dependent variables show a moderate to high degree
of spatial autocorrelation(see Figure 1). The inappro-
priateness of the independence assumption shows up
in the residual errors, the €;’s. When the samples are
spatially related, the residual errors reveal a systematic
variation over space, i.e., they exhibit high spatial au-
tocorrelation. This is a clear indication that the model
was unable to capture the spatial relationships exist-
ing in the data. Thus the model is a poor fit to the
data. Incidently the notion of spatial autocorrelation
is similar to that of time autocorrelation in time series
analysis but is more difficult to model because of the
multi-dimensional nature of space. We now introduce a
statistic which quantifies spatial autocorrelation.

2.2 Spatial Autocorrelation and Examples

There are many measures available for quantifying
spatial autocorrelation. Each have their own strengths
and weaknesses. Here we will briefly describe the Moran
I measure.

In most cases the Moran’s I measure (henceforth
MI) ranges between -1 and +1 and thus is similar
to the classical measure of correlation. Intuitively,
a higher positive value is indicative of high spatial
autocorrelation. This implies that like values tend to
cluster together or attract each other. A low negative
value is an indication that high and low values are
interspersed. Thus like values are de-clustered and
tend to repel each other. A value close to zero is an
indication that no spatial trend (random distribution)
is discernible using the given measure. The exact
definition of MI is given in the Appendix.

All spatial autocorrelation measures are crucially
dependent on the choice and design of the contiguity
matrix W. The design of the matrix itself is predicated
on determining “what constitutes a neighborhood of
influence?” Two common choices are the four and the
eight neighborhood. Thus given a lattice structure and
a point S in the lattice, a four-neighborhood assumes
that S influences all cells which share an edge with S.
In an eight-neighborhood it is assumed that S influences
all cells which either share an edge or a vertex. An eight

neighborhood contiguity matrix is shown in Figure 3.
The contiguity matrix of the uneven lattice(left) is
shown on the right hand side. The contiguity matrix
plays a pivotal role in the spatial extension of the
regression model.

3 Spatial Regression Models

We now show how spatial dependencies are modeled in
the framework of regression analysis. This may serve as
a template for modeling spatial dependencies in other
data mining techniques.

3.1 Spatial Autoregressive Model(SAM)

In spatial regression the spatial dependencies of the
error term or the dependent variable are directly
modeled in the regression equation [2]. Assume that
the dependent values y; are related to each other, i.e.
yi = f(y;) ¢ # j. Then the regression equation can be
modified as

y=pWy+XB+e.

Here W is the neighborhood relationship contiguity ma-
trix and p is a parameter that reflects the strength of
spatial dependencies between the elements of the depen-
dent variable. After having introduced the correction
term pWy, the components of the residual error vector
€ are now assumed to be generated from independent
and identical standard normal distributions.

We will refer to this equation as the Spatial Autore-
gressive Model(SAM). Notice when p = 0 , this equa-
tion collapses to the classical regression model. The
benefits of modeling spatial autocorrelation are many:
(1) The residual error will have much lower spatial au-
tocorrelation, i.e., systematic variation. With proper
choice of W, the residual error should, at least theoreti-
cally, have no systematic variation. (2) If the spatial au-
tocorrelation coefficient is statistically significant then
it will quantify the presence of spatial autocorrelation.
It will indicate the extent to which variations in the
dependent variable (y) are explained by the average of
neighboring observation values. (3) Finally, the model
will have a better fit, i.e., higher R-squared statistic(See
the Appendix for a dramatic example).

As in the case of classical regression, the SAM
equation has to be transformed via the logistic function
for binary dependent variables. The estimates of p and
B can be derived using maximum likelihood theory or
Bayesian statistics. We have carried out preliminary
experiments using the spatial econometrics matlab
package 2 which implements a Bayesian approach via
Gibbs Sampling [13].

2We would like to thank James
Lesage(http://www.econ.utoledo.edu/lesage) for making the
matlab toolbox available on the web.
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Figure 3: A spatial neighborhood and its contiguity matrix

4 Experiment Evaluation of Spatial
Autoregression

4.1 Experiment Design

Goals: The goal of the experiments is to evaluate
the effects of including the spatial autoregressive term,
pWy, in the logistic regression model. The experimen-
tal setup is shown in Figure 4. The 1995 Darr wetland
data was used as the learning set to build the two mod-
els. The parameters of the classical and spatial mod-
els were dervied using maximum likelihood estimation
and Gibbs Sampling respectively. The two models were
evaluated based on their ability to predict the nest lo-
cations on the test data. Classification accuracy, which
we describe next, was used to evalute the two models.
Metric of Comparison: Classification accuracy
achieved by classical and spatial logistic regression are
compared on the test data. We use the Receiver Oper-
ating Characteristic(ROC) [5] curves to compare clas-
sification accuracy. ROC curves plot the relationship
between the true positive rate(TPR) and the false pos-
itive rate(FPR). For each cut-off probability b, T PR(b)
measures the ratio of the number of sites where the
nest is actually located and was predicted divided by
the number of actual nest sites. The FPR measures
the ratio of the number of sites where the nest was ab-
sent but predicted divided by the number of sites where
the nests were absent. The ROC curve is the locus
of the pair (TPR(b), FPR(b)) for each cut-off prob-
ability. The higher the curve above the straight line
TPR = FPR the better the accuracy of the model.

Comparison in Space: We use the 1995 Stubble
wetland data to make comparison in space. The result
is shown in Figure 5. Clearly, by including a spatial
autocorrelation term, there is substantial and system-
atic improvement for all levels of cut-off probability on
both the learning data(1995 Darr) and test data(1995
Stubble).

Comparison in Time: We also carried out
experiments for making comparison in time. For this
we used the 1996 data acquired in the Darr wetland. In
this case there is virtually no significant improvement
between the classical and spatial models. This is not

entirely surprising because in 1996 the nests of two bird
species were counted in the Darr wetland. Also some
environmental factors(e.g. water depth) have changed
significantly in one year [15, 16].

5 Discussion, Conclusion and Future
Work

The standard measure for classification accuracy may
not be the most appropriate for making spatial predic-
tions. What is needed is a measure of spatial classifi-
cation accuracy. Spatial accuracy is important because
of the effects of discretizations of continuous marsh into
discrete pixels, as shown in Figure 7. Figure 7(a) shows
the actual locations of nests and 7(b) shows the pix-
els with actual nests. Note the loss of information
during the discretization of continuous space into pix-
els. Many nest location barely fell within the pixels
labeled ‘A’ and were quite close to other pixels with
label of no-nest. Now consider two predictions shown
in Figure 7(c) and 7(d). Domain scientists prefer pre-
diction 7(d) over 7(c), since predicted nest locations
are closer on average to some actual nest locations.
Classification accuracy measure cannot distinguish be-
tween 7(c) and 7(d), and a measure of spatial accuracy

is needed to capture this preference [3].
We have shown that augmenting classical regression

models with a spatial autoregressive term leads to
substantial improvements in the predictive power of the
models. In order to include the spatial autoregressive
term, a contiguity matrix which captures the spatial
relationship between the locations of data samples has
to be constructed. We have also shown that the
classical measures of classification accuracy may not be
appropriate to measure the predictive power of spatial
regression models.
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Figure 5: (a) Comparison of the probit and probit with spatial autocorrelation on the 1995 Darr wetland learning
data. (b) Comparision of the two models on the 1995 Stubble wetland testing data.
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6.1

There are many measures available for quantifying
spatial autocorrelation. Each have their own str engths
and weaknesses. The two most well known measures are

Appendix:Spatial Autocorrelation

Moran’s I measure
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Figure 7: (a)The actual locations of nest, (b)Pixels with actual nests, (c)Location predicted by a model, (d)Location
predicted by another mode. Prediction(d) is spatially more accurate than (c). Classical measures of classification

accuracy will not capture this distincition.

Moran’s I and Geary’s C measure. Here we will briefly
describe the Moran I measure.

In most cases the Moran’s I measure (henceforth
MI) ranges between -1 and +1 and thus is similar
to the classical measure of correlation. Intuitively,
a higher positive value is indicative of high spatial
autocorrelation. This implies that like values tend to
cluster together or attract each other. A low negative
value is an indication that high and low values are
interspersed. Thus like values are de-clustered and tend
to repel each other. A smooth surface will have a high
spatial autocorrelation and a ches sboard-like surface
a high negative spatial autocorrelation. A value close
to zero is an indicatio n that no spatial trend (random
distribution) is discernible using the given measure.

The formula for MI is

n Y I Wi — ®) (2, — 7)

MI = =n Jj=n ) i=n =\2
i1 i=1 Wi 2im1 (T — )

where n is the number of data points, z}s are the
data values, Z is the mean and W is the design or
contiguity matrix. All spatial autocorrelation measures
are crucially dependent on the choice and design of the
contiguity matrix W.

6.2 Example of including the spatial
autoregressive term

Figure 8 shows an example of how by adding a
spatial autoregressive term leads to improvement in the
accuracy of a linear regression model when applied to
spatial data. The data was extracted from a crime data
set in 49 neighborhoods in Columbus, Ohio [2]. The
dependent variable is the number of crime incidents and
the independent variables are mean income and mean
house value.
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Figure 8: (a)The contiguity matrix of the 49 neighbor-
hoods in Columbus, Ohio. (b) Including the spatial au-
toregressive term reduces the systematic variation in the
residual error term(lower Moran I) and consequently is
a better fit(higher R?).



