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Abstract

Data warehouses(DW) are becoming essential tools in decision making and data analysis.
Data cube operator is used to generate the union of a set of alpha-numeric summary tables
corresponding to a given aggregation hierarchy. Spatial data warehouses prefer browsing of
aggregated data in terms of albums of maps rather than the alpha-numeric summary tables.
It is quite tedious to convert the output of data cube operator to an album of maps using
current tools. We extend the concept of data cube to spatial domain by proposing “map
cube,” an operator which takes the base map, base table, cartographic preference, etc., and
generates an album of maps. Map cube organizes the album of generated maps using the
given aggregation hierarchy to support browsing via roll-up, drill-down, and other operators
on aggregation hierarchy. We use the census data to illustrate the notion of the map cube,
and discuss research issues raised by the map cube operator.
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1 Introduction

A data warehouse(DW) is a collection of decision support technologies, aimed at enabling
knowledge workers(executives, managers, analysts) to make better and faster decisions [3].
Data warehouses contain large amounts of information, which is collected from a variety of
independent sources and is often maintained separately from the operational databases. Tradi-
tionally operational databases are optimized for on-line transaction processing (OLTP), where
consistency and recoverability are critical. Transactions are typically small, and access a small
number of records based on the primary key. Operational databases maintain current state
information. In contrast, data warehouses maintain historical information and are designed for
on-line analytical processing (OLAP), where queries aggregate large volumes of data in order to
detect trends and anomalies [17]. The academic research in DW addresses issues such as data
warehouse design processes [12], data cube models [8] and efficient implementations [10, 11].
Dimensions, measures and aggregation hierarchies are the core concepts in data warehouses.
Dimensions are used to define the context of the measures, and can be viewed as independent
variables (or keys) which determine the values of measures (dependent variables). There are
two kinds of aggregation hierarchies, namely, dimension power-set hierarchy and per-dimension
concept hierarchy. To facilitate the complex analysis, the data in the warehouse are often
modeled as a multi-dimensional data cube. For example, in a census data warehouse, the age
group, income type, race category, and time (year) are some of the dimensions of interest. Data
cube [8] is an aggregate operator, and it computes all group-by SQL queries and aggregates
data.

Spatial data warehouses contain geographic data, e.g., satellite images, remote sensing im-
ages [5, 16, 11], etc., in addition to non-spatial data. Examples of spatial data-warehouses in-
clude the US Census data-set [1, 6], Earth Observation System archives of satellite imagery [22],
Sequoia 2000 [20], highway traffic measurement archives etc. The research in spatial data ware-
houses has focused on case-studies [5, 16] and on per dimension concept hierarchy [11]. In
contrast, in this paper, we will focus on the dimension power-set hierarchy. A major difference
between conventional and spatial data warehouses lies in the visualization of the results. Con-
ventional data warehouse OLAP results are often shown as summary tables or spread sheets
of text and numbers, whereas in the case of spatial data warehouse the results may be albums
of maps. It is not trivial to convert the alpha-numeric output of data cube on spatial data
warehouses into an organized collections of maps. Another issue is the aggregate operators on
geometry data types(e.g. point, line, polygon). Neither existing databases nor the emerging
standard for geographic data, OGIS [18], has addressed this issue. In this paper we present map
cube, an operator based on conventional data cube but extended for spatial data warehouses.
With the map cube operator, we visualize the data cube in spatial domain via an album of
maps. For some spatial applications, e.g. census data, which require aggregation on different
measures and comparison between different categories in each attribute, the map cube operator
can be very useful.

Map cube is an operator which takes a base map, associated data tables, aggregation hi-
erarchy and cartographic preferences to produce an album of maps. This album of maps is
organized using the given aggregation hierarchy(e.g. dimension cube). The goal is to support
exploration of the map collection via roll-up, drill-down, and other operations on aggregation
hierarchy. We also provide a set of aggregate operators for geometric data types and classify



them using a well-known classification scheme for aggregate functions.

The rest of the paper is organized as follows. Section 2 discusses some basic concepts of Data
Warehouses and Geographic Information System. In section 3, the definition and operation of
map cube are introduced with an example. Section 4 shows an application of the map cube. In
Section 5, the research issues related to map cube are discussed. Section 6 includes a summary
and a discussion of future directions.

2 Basic Concepts

2.1 Concepts in Geographic Information System

A geographic information system (GIS) [4, 23] is a computer-based information system con-
sisting of integrated set of programs and procedures which enable the capture, modeling, ma-
nipulation, retrieval, analysis and presentation of geographically referenced data. A map is
a collection of vector and raster layers as shown in Figure 1. Each map has its own visual
representation, including graphics, layout, legend, title, etc.
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Figure 1: Concepts in Geographic Information Systems

In the raster layer representation, the space is divided into cells. The locations of a geographic
object or conditions are defined by the row and column of the cells they occupy. The area that
each cell represents defines the spatial resolution available. The raster layer is a collection of
pixels and may represent raw images collected directly from satellites, aerial photography and
other sensors. The raster layer may also represent interpreted images showing a classification
of areas.

Information associated with the raster layer representation include statistics mask, covari-
ance matrix, histogram for the classified images, and training sample. The training sample may
be used by supervised classification. These training fields are areas of known identity delineated



on the digital image, usually by specifying the corner points of a rectangular or polygonal area
using line and column numbers within the coordinate system of the digital image.

Vector layers are collection of vector elements. The shape of vector element may be zero
dimensional(point), one dimensional(curves, lines) or two dimensional(surface, polygons). For
example, in a vector layer representation, an object type house may have attributes, referencing
further objects types: polygon, person name, address, and date. The polygon for the house
is stored as a “Vector Element” in Figure 1. A vector layer may have its own cartographic
preferences to display the elements. These cartographic preferences include text, symbol, and
some visual properties: color, texture, thickness, etc.

The elements and attributes in the vector layers may be associated with non-spatial at-
tributes managed by a database system which consists of many tables. In Figure 4, for example,
the vector layer Base-Map has its corresponding table, Election-Base, which has the attributes
of State Name, GPP, LPP, Boundary, and Delegates. The Boundary is a foreign key pointing
to another table which describes the geometric boundary of each polygon.

A network layer is a special case of a vector layer. The network layer is composed of
a finite collection of the points, the line-segments connecting the points, the location of the
points, and the attributes of the points and line-segments. For example, the network layer for
transportation applications may store road intersection points and the road segments connecting
the intersections.

Maps are also associated with reference systems and control points. A reference system is
a coordinate system attached to the surface of the earth. Reference system allows us to locate
the map element on the surface of the earth. Control points are common to the base map and
the slave map being prepared. The exact locations of control points are well defined. Examples
include intersection of roads and railways or other land marks or monuments. The control
points are used to geo-register newly acquired maps to the well-defined base map at different
scales.

2.2 Aggregate Functions

Aggregate functions compute statistics for a given set of values. Examples of aggregate functions
include sum, average, and centroid. Aggregate functions can be grouped into three categories,
namely, distributive, algebraic, and holistic as suggested in [8]. We define these functions in this
section and provide some examples from GIS domain. Table 1 shows all of these aggregation
functions for different data types.

Aggregation Function

Data Type Distributive Function Algebraic Function Holistic Function

Set of numbers | Count, Min, Max, Sum | Average, Standard De- | Median, MostFrequent,
viation, MaxN, MinN() | Rank

Set of points, | Convex Hull, Geomet- | Centroid, Center of | Nearest neighbor index,
lines, polygons | ric Union, Geometric | mass, Center of gravity | Equi-partition
Intersection

Table 1: Aggregation Operations



e Distributive: An aggregate function F is called distributive if there exists a function G
such that the value of F for an N-dimensional cube can be computed by applying G func-
tion to the value of F' for (N +1)-dimensional sub-cubes. For N=1, F(M;;) = G(F(C;)) =
G(F(R;)), where M;; represents the elements of 2-dimensional matrix, C; denotes each
column of the matrix, and R; denotes each row of the matrix. Consider the aggregate
function MIN and COUNT as shown in Figure 2. In the first example, F' = MIN, then
G = MIN, since MIN(M;;) = MIN(MIN(C;)) = MIN(MIN(R;)). For the second
example, F = COUNT, G = SUM, since COUNT (M;;) = SUM(COUNT(Cj)) =
SUM(COUNT(R;)). Other distributive aggregate functions include MAX(), SUM(),
etc. Note that “null” valued elements are ignored in computing aggregate functions.
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Figure 2: Computation of distributive aggregate function

Distributive GIS aggregate operations include Convex hull, Geometric Union, Geometric
Intersection, etc. The convex hull of a set @) of points is the smallest convex polygon P
for which each point in @ is either on the boundary of P or in its interior. Intuitively, the
convex hull is the shape formed by a tight rubber band that surrounds all the nails. The
geometric intersection is a binary operation that takes two sets of geometric areas and
return the set of regions that are covered by both of the original areas. The geometric
union is a binary operation that takes two sets of geometric areas and return the set of
regions that are covered by at least one of the original areas. For all of these aggregations,
the operator aggregates the computed regions of the subset, and then computes the final
result.

e Algebraic: An aggregate function F' is algebraic if F' of an N-dimensional cube can
be computed using a fixed number of aggregates of the (N+1)-dimensional sub-cubes.
Average, Variance, Standard Deviation, MaxN, MinN are all algebraic. In Figure 3,
for example, the computations of Average and Variance for the matrix M are shown.
The average of elements in two dimensional matrix M, can be computed from Sum and
Count values of the 1-D sub-cubes(e.g. rows or columns). The Variance can be derived
from, Count, Sum(i.e. ; X;), and Sum of Sq(i.e. 3; X?), of rows or columns. Similar
techniques apply to other algebraic functions.

An algebraic aggregate operation in GIS is Center. The center of n geometric points
Vi = (VE, V) is defined as Center = %z?’i, Cy = %, Cy = ¥ Both the center

T Yy
and the count are required to compute the result for the next layer. Center of mass and



Algebraic Aggregate Function: Average Algebraic Aggregate Function: Variance
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Figure 3: Computation of algebraic aggregate function

Center of gravity are other examples of algebraic aggregate functions.

e Holistic: An aggregate function £ is called holistic if the value of F' for an N-dimensional
cube can not be computed from a constant number of aggregates of the (N+1)-dimensional
sub-cubes. To compute the value of F' in each level, we need to access the base data.
Examples of holistic function include Median, MostFrequent, and Rank.

Holistic GIS aggregate operations include equi-partition and nearest-neighbor index.
Equi-partition of a set of points yields a line L such that there are the same number
of point objects on each side of L. Nearest-neighbor index measures the degree of cluster-
ing of objects in a spatial field. If a spatial field has the property that like values tend to
cluster together, then the field exhibits high nearest-neighbor index. When new data are
added, many of the tuples in the nearest neighbor relationship may change. Therefore,
the nearest-neighbor index is holistic. The line of Equi-partition could be changed with
any new added points. To compute the equi-partition or nearest neighbor-index in all
levels of dimensions, we need the base data.

The computation of aggregate functions has graduated difficulty. The distributive function
can be computed from the next lower level dimension values. The algebraic function can
be computed from the next lower scratchpads. The holistic function needs the base data to
compute the result in all levels of dimension.

An example of geometric aggregation

Figure 4 shows the results from aggregation operation of geometric union. The base table,
Election-Base, has the following attributes: State Name, Governor Political Party(GPP), ma-
jority Legislator Political Party(LPP), Boundary, and Delegates. The Boundary is a foreign
key pointing to another table which describes the geometric polygon representing the state
boundary polygon. From the base table and its corresponding map, we issue the queries GQ1,
GQ2, GQ3, GQ4, and GQbH as listed in Table 2. If the neighboring polygons have the same
value in the attributes of the GROUP BY clause, the Geometric-Union-by-Continuous-Polygon
operator merges them into one large polygon. These queries have the same effect as the GIS
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Figure 4: An example of GIS aggregate function, geometric-union

GQ1| SELECT GPP, LPP, Geometric-Union-by-Continuous-Polygon(Boundary)
FROM Election-Base GROUP BY GPP, LPP

GQ2 SELECT GPP, Geometric-Union-by-Continuous-Polygon(Boundary)
FROM Election-L1 GROUP BY GPP

GQ3 SELECT LPP, Geometric-Union-by-Continuous-Polygon(Boundary)
FROM Election-L1 GROUP BY LPP

GQ4 SELECT GPP, Geometric-Union-by-Continuous-Polygon(Boundary)
FROM Election-Base GROUP BY GPP

GQj5 SELECT LPP, Geometric-Union-by-Continuous-Polygon(Boundary)
FROM Election-Base GROUP BY LPP

Table 2: SQL queries for map reclassification

reclassify map operation. For example, the query GQ1 generates the same result as to reclassify
Base-Map by attributes GPP and LPP. The map interpretation of these queries is shown in
the left portion of Figure 4. The boundaries of regions Q1,Q2,...,Q8 are derived from the
geometric union of smaller regions P1, P2,..., P12 in the Base-map. For example, )2 repre-
sents the geometric union of P2 and P3 since they have same value for grouping attribute set
<LPP,GPP>. Similarly, regions A1, A2, A3 in Map-L2-A and regions B1, B2, B3 in Map-L2-B
are derived from the geometric-union of smaller regions in Map-L1(or Base-map). For example,
region Al in Map-L2-A is the geometric union of region @1 and Q4 from Map-L1.

2.3 Aggregation hierarchy

The CUBE operator [8] generalizes the histograms, cross-tabulation, roll-up, drill-down, and
sub-total constructs. It is the N-dimensional generalization of simple aggregate functions. Fig-



ure 5 [8] shows the concept for aggregation up to 3-dimensions. The dimensions are Year,
Company, and Region. The measure is the sales. The 0D data cube is a point, which shows
the total summary. There are three 1-D data cubes: Group-by Region, Group-by Company,
and Group-by Year. The three 2-D data cubes are cross tabs, which are the combination of
these three dimensions. The 3D data cube is a cube with three intersecting 2D cross tabs.
Figure 6 [8] shows the tabular forms of total elements in the 3D data cube after the CUBE
operation. Creating a data cube requires generating the power set of the aggregation columns.

A tabular view of the individual sub-space data-cubes of Figure 5 is shown in Figure 7. The
union of all the tables in Figure 7 yields the resulting table from the data cube operator. The
0-dimensional sub-space cube labeled “Aggregate” in Figure 5 is represented by Table “SALES-
L2” in Figure 7. The one-dimensional sub-space cube labeled “By Company” in Figure 5
is represented by Table “SALES-L1-C” in Figure 7. The two-dimensional cube labeled “By
Company & Year” is represented by Table “SALES-LO0-C” in Figure 7. Readers can establish
correspondence between remaining subspace cubes and tables.

By Region & Year

Sum By Region

America

Europe

Asia

By Region & Company

Figure 5: The 0-d, 1-D, 2-D, and 3-D data cubes
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The cube operator can be modeled by a family of SQL queries using GROUP BY operators
and aggregation functions. Each arrow in Figure 7 will be represented by a SQL query. In
Table 3, we provide the corresponding queries for the five arrows labeled Q1,Q2,...,@5 in
Figure 7. For example, query )1 in Table 3 aggregates “Sales” by “Year” and “Region,” and
generates Table “SALES-L0-A” in Figure 7.

The GROUP BY clause specifies the grouping attributes, which should also appear in the



Cube-query Data Cube
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Figure 6: An example of data cube

SELECT clause, so that the value resulting from applying each function to a group of tuples
appears along with the value of the grouping attribute(s).

Q1 | SELECT ’ALL’, Year, Region, SUM(Sales) FROM SALES-Base GROUP BY Year,Region

Q2 | SELECT "ALL’, 'ALL’, Region SUM(Sales) FROM SALES L0-A GROUP BY Region

Q3 | SELECT "ALL’, 'ALL’, "’ALL’ SUM(Sales) FROM SALES-LI-A

Q4 | SELECT ’ALL’, ’ALL’, Region, SUM (Sales) FROM SALES-Base GROUP BY Region

Q5 | SELECT "ALL’, 'ALL’, ’ALL’, SUM(Sales) FROM SALES-Base

Table 3: Table of GROUP BY queries

2.4 What is an Aggregation Hierarchy used for?

To support OLAP, the data cube provides the following operators : roll-up, drill-down, slice
and dice, and pivot. We now define these operators.

e Roll-up: increasing the level of abstraction. It generalizes one or more dimensions and
aggregate the corresponding measures.

Table SALES-LO-A in Figure 7 is the roll-up of Table SALES-Base on the Company
dimension.
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Figure 7: An example of group-by
e Drill-down: decreasing the level of abstraction or increasing detail. It specializes one or
a few dimensions and presents low-level aggregations
Table SALES-LO-A in Figure 7 is the drill-down of Table SALES-L1-A on the Year di-
mension.
e Slice and Dice: selection and projection. Slicing into one dimension is very much like

drilling one level down into that dimension, but the number of entries displayed is limited
to that specified in the slice command. A dice operation is like a slice on more than one
dimension. On a 2-dimensional display, for example, dicing means slicing on both the row
and column dimensions

Company | Year | Region | Sales
ALL ALL | America | 78

Table 4: Slice on the value America of the Region dimension

Table 4 shows the result of slicing into the value of “America” on the Year dimension from
the table SALES-L2 in Figure 7. Slicing into one dimension is very much like drilling one
level down into that dimension.

Company | Year | Region | Sales
ALL 1994 | America | 35

Table 5: Dice on value 1994 of Year dimension and value America of Region dimension

Table 5 shows the result of dicing into the value of “1994” on Year dimension and the value
of “America” on Region dimension from table SALES-L2 in Figure 7. A dice operation



is like slice on more than one dimension.

e Pivoting: re-orienting the multidimensional view of data. It presents the measures in
different cross-tabular layouts

3 Map Cube

In this section, we define the map cube operator, which provides an album of maps to browse
results of aggregation. We use a simple example to show the distinction between a data cube
and a map cube. We also provide the grammar and the translation rules for the map cube
operator.

3.1 Definition

We extend the concept of data cube to spatial domain by proposing the “map cube” operator
as shown in Figure 8. Map cube is defined as an operator which takes the input parameters,
i.e., Base map, Base table, Cartographic preference, etc., and generates an album of maps for
analysis and comparison. It is built from the requirements of spatial data warehouse, that
is, to aggregate data across many dimensions looking for trends or unusual pattern related to
spatial attributes. The basis of map cube is the hierarchy lattice, either dimension power-set
hierarchy, or concept hierarchy, or the mixture of both. In this paper, we will focus on the
dimension power-set hierarchy. Figure 9 shows an example of dimension power-set hierarchy.
This example has three attributes: Maker(M), Type(T), and Dealer(D). There are eight
possible groupings of all attributes. Each node in the lattice corresponds to one group-by.
Figure 10 shows a three-dimension concept hierarchy. The car maker can be classified as
American car, European car, or Japanese car. American car includes Ford, GM, and Chrysler.
For the car type dimension, it can be separated as Sedan and Pickup Trucks. The Sedan can
go down one detail level as Small, Medium, Large, and Luxury.
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Figure 8: Concepts in GIS with data cube & map-cube
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Figure 9: The Dimension Power-Set Hierarchy
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Figure 10: The Concept Hierarchies of (a) MAKER and (b)VEHICLE (c)DEALER

Let the number of dimensions be m, each dimension be A;, i = 1,2, ... ;m, and A,, be the
geographic location dimension, then we have (m-1) different levels of lattice for the dimension
power-set hierarchy. Let the level with only one dimension A4;, i = 1,2, ... , m-1, be the 1th

level, the level with two dimensions, A;;, where i#j, i=1,2,...m-1, j=1,2,...m-1, be the 2st level,
and the level with the complete set of dimensions Ay AsAs, ..., A1 be the (m-1)th level. The
total number of cuboids is 77! ("~'). Let the cardinality of each dimension A; be c¢;, then
for each cuboid, such as, A4;A4;... Ay, we have an album of ¢; X ¢; X ... X ¢; maps.

In other words, map cube is a data cube with cartographic visualization of each dimension
to generate an album of related maps for dimension power-set hierarchy or concept hierarchy
or mixed hierarchy. Map cube adds more capability to traditional GIS where maps are often
independent [2]. The data-cube capability of roll-up, drill-down, slicing and dicing get com-
bined with the map view. It can benefit analysis and decision making based on spatial data
warehouses.

3.2 An example of map cube

Figure 11 demonstrates the comparison between a map cube and a data cube. The operators
for data cube and map cube are also provided. The left portion of the figure is the effect of
data cube operation. There are 2 attributes in the Group by Cube clause, so the data cube
will generate 4 tables. The map cube operator not only generates the tables, but also produces
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the associated map for each table. In the map cube operator, the attributes for “Reclassify by”
and “Data cube dimension” are the same, and the parameter, No-of-map-per-cuboid, in the
Cartographic preference is set to one, so there is only one map associated with each reclassified
table. In other situations, however, each reclassified table is a cuboid, and will generate more
than one map after the map cube operation, depending on the number of attributes in the
“Data cube dimension.” The queries for the data cube and the map cube are also provided at

the top of the figure.

Data cube operator(Generated implicitly)

From Election-Base
Group by CUBE GPP,LPP

Select GPP, LPP, Sum(Delegates) as Delegates,
Geometric-Union-By-Continuous-Polygon(Boundary) as Boundary

Election-L1

(GPP)

D
R
D

Al
A2
A3

13
16
21

Map cube operator

Base-map = Election-Base-Map
Base-table = Election-Base
Aggregate by SUM:Delegates
Reclassify by GPP,LPP

Data cube dimension GPP,LPP
Cartographic preference Thickness =1,

(LPP)

L2B-R1
L2B-R2
L2B-R3

D
R
D

Bl
B2
B3

B1: 16

B2: 24

) Governor | Legislator Color =red,
Region| political | Political | Boundary| Delegates Symbol = Boundary : Delegates,
Name | Party Party C
(GPP) (LPP) No-of-map-per-cuboid = 1
L1-Rl] D D Q1 5
L1-R2| R D Q2 7
L1-R3 D D Q3 a4 Map-L1
L1-R4| D R Q4 8 L5 0. 7
L1-R5| R R Qs 6 N : 3 4
L1-R6| D R Q6 10 Q: 8, Q
L1-R7| R D Q7 3 Q516 /Q6:10
L1R8| D D Q8 7
3/ Q87
GPP, LPP Q73
Election-L2-A Election-L2-B GPP,LPP
Governor / Legislator
Region | Political |Boundary| Delegates Region | Political | Boundary Delegates| " g
Neme | Party y| Deleg: PP LpP Neme | Party eg: Map L2-A Map-L2-B

NONE

Election-L3

Region
Name

GPP‘LPP

Bounday‘ Delegates|

ALL

‘ALL ‘ ALL‘ ALL

=

NONE
Map-L3

N\
\

B3: 10

ALL: 50

Data cube View

Map cube View

Figure 11: Map cube view

3.3 Steps in Generating Map Cube

To generate the map cube, first, we issue the map-cube query. This query is decomposed into
the DB engine and the geometry engine. The relational DB engine processes the 2" group-by
SQL queries and generates 2™ tables, where n is the number of attributes in the “Reclassify by”
clause. The GIS procedure processes the map reclassify queries on the base map and generates
2™ maps. These maps and tables are in one-one correspondence with each other. Finally, the
cartographic preferences are dealt with in the Cartographic Visualization Step, and an album
of maps is plot.

3.4 The Grammar for Map Cube Operator

We have used “yacc” [14] like syntax to describe the syntax of map cube via a grammar and
translation rules. Words in angular brackets, e.g. <carto-value> , denote non-terminating ele-
ments of the language. For example, the <carto-value> will be translated into either <name>
or <num>. The vertical bar(]) means “or,” and the parentheses are used to group subexpres-
sions. The star(*) denotes zero or more instances of the expression, and the plus(+) denotes one
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< map, table>

Cartographic
Visualization

An album of maps showing aggregate
spatial/non-spatia data arranged as map-cube

Figure 12: Steps in Generating Map Cube

or more instances of the expression. The unary postfix operator(?) means zero or one instance
of the expression. These translations will continue till we reach a terminating elements. For
example, <letter> will finally be translated into one character.

An example of this grammar is shown in figure 11. In this map cube operator, the fol-
lowing translations are done: <base-map name> into Election-Base-Map, <base-table name>
into Election-Base, <aggregate list> into {SUM:Delegates}, <attribute list> of both “Re-
classify by” and “Data cube dimension” into {GPP,LPP}, and <carto attribute list> into
{Thickness=1,Color=red,Symbol=Boundary:Delegates,No-of-map-per-cuboid=1}.

4 A Case Study - Analyzing the Census Data

4.1 Application Domain

The 1990 Census is the most detailed tabulation of Americans demographic data. It contains
detailed data on population, race and ethnicity, age and sex, education, employment, income,
poverty, housing, and many other topics for each of several different levels of geography:

e The United States and major regions of the country
e Each state and metropolitan area

e All 3,000+ counties in the United States

e Municipalities, census tracts, and block groups

In this case study, we summarize data for the seven-county Twin Cities metropolitan area:
Hennepin, Ramsey, Anoka, Carver, Dakota, Scott, and Washington Counties. We use census
tracts as the unit of analysis, since census tract provides better geographic detail than city-level
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Map Cube Base-map = <base-map name>
Base-table = <base-table name>
( Where < join attribute list>
(AnNd < join attribute list>) ™ ) ?
Adgregate by <aggregate list>
Reclassify by <attribute list>
Data cube dimension <attribute list>
Cartographic preference<carto attribute list>

<base-map name> — <name> (, <name> )*

<base-table name> — <name>

<aggregate list> —= <aggregate unit> (<operator> <aggregate unit=>)?
<aggregate unit> — <aggregate func>:<name>

<aggregate func> ——= SUM |MAXN |MINN | COUNT | MEDIAN
<join attribute list> — = <name> <operator> <name>

<attribute list> —= <name>7? | <name> ( , <name> )*

<carto attribute list>——= <carto-attribute-value pair>

(, <carto-attribute-value pair>) *
<carto-attribute-value pair> — < carto-attribute > = <carto-value>
<carto-attribute> — Color | Thickness | Texture | Annotation |

Text | Symbol | Layout | Legend | Title |
No-of-map-per-cuboid | Normalize

<carto-value> —=  <name> | <num>

<num> —  <digits (. <digit=") ?2(E (+|-)?<digit=") ?
<name> — = <letter> ( <letter> | <digit> | <symbol> )*
<letter> —= A|B|...|Z]alb]...|z

<digit> —= 0]1]2]3]4]....]19

<symbol> — - _1.1-1:

<operator> — =|><|+]|-|*|/

Figure 13: The Grammar for map cube operator

data. Census tracts contain an average of 4,000 people. In cities like Minneapolis or Saint Paul,
a census tract is often ten-to-twenty city blocks in size. Minneapolis contains 126 census tracts
and Saint Paul, 82.

4.2 Map cube definition
4.2.1 Base Table

In this case study, there are four dimensions and one measure. The four dimensions are county
location, age group, income type and race category. The measure is population. The location
dimension is embedded in the map, and we should consider the other three dimensions in the
power-set hierarchy(see Figure 14). We now provide a detailed explanation for each dimension:

e Age Group: There are seven groups, under 25 years, 25 to 34 years, 35 to 44 years, 45 to
54 years, b5 to 64 years, 65 to 74 years, 75 year and over;

e Income type: There are nine types, less than $5,000, $5,000 to $9,999, $10,000 to $14,999,
$15,000 to $24,999, $25,000 to $34,999, $35,000 to $49,999, $50,000 to $74,999, $75,000
to $99,999, $100,000 or more;
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e Race category: There are six categories, (white), (black), (American Indian, Eskimo, or
Aleut), (Asian or pacific islander), (other);

NONE O-Dimension

AGE INCOME RACE 1-Dimension

Al IR RA 2-Dimension
AR 3-Dimension

Figure 14: Census data dimension power-set hierarchy

Table 6 and table 7 are two examples of the fundamental tables for constructing the map
cube. Table 6 describes the spatial attributes and spatial concept hierarchy for each census
track. The Boundary attribute contains the latitude and longitude of each point in the census
track boundary. Table 7 contains the non-spatial attributes (Age Group, Income Type, Race
category) and measure (number of people) for each census track.

CT-B
Census-Track-ID | Boundary County State
10123 (,), (), | Dakota Minnesota
10186 (,), (,),... | Hennepin | Minnesota

Table 6: Base Table CT-B for Census Data

Population(Householder)
Census-Track-ID | Age | Income Race | No-of-people(House Holder)
10123 35-44 | $5,000 to $9,999 White | 40
10123 35-44 | $10,000 to $14,999 | White | 25

Table 7: Base Table Population for Census Data

4.2.2 Map cube 0-D SQL query

In this dimension, there is one map corresponding to householder population, which is the sum-
mary of all the age group, income type, and race category. The householder population density
is defined as the the number of householders divided by the size of the region. The householder
population density data are listed in table 8. In this table, the householder population
density is convert to the range of 0 to 1, which is the gray scale range. The query is to gen-
erate the map and reclassify the original map from a census block unit to be a county level block.

The query for the 0-D map cube:
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Base-map=CT-B-Map

Base-table=CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID

Aggregate by Sum:No-of-people / Sum:Area(CT-B.boundary)

Reclassify by CT-B.County

Data cube dimension

Cartographic preference Color=grayscale,No-of-map-per-cuboid=one per category

The query for the 0-D data cube:

Select Geometric-union(CT-B.Boundary), Sum(No-of-people) /Sum(Area(CT-B.boundary))
From CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID

Group by CT-B.County

County Householder population Density | Gray
Name (Householders / Sq km) Scale
Anoka 75.29 0.156
Carver 18.03 0.037
Dakota 67.39 0.140
Hennepin 293.0 0.610
Ramsey 480.3 1.000
Scott 21.07 0.043
Washington 48.88 0.101

Table 8: Householder population density in seven counties of Twin Cities

Figure 15: House-holder population density in seven counties of Twin Cities
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Table 8 and Figure 15 show the map cube and the associated data cube generated from
the above map cube query. This 0-dimensional map cube allows users to observe the relative
householder population densities of the seven counties within the Twin Cities metropolitan
area. The data used based on 1990 census data. The maps are for illustrative purposes only
since data quality was not evaluated. Located in the center area, the Ramsey county has the
highest householder population density with the dark region, while the Carver county, located
in the Southwest of the map, has the lowest householder population density, as we can easily
observe from the map.

4.2.3 Map cube 1-D SQL query

In this dimension, there are seven maps, one for each age group. This query reclassifies the
base map from a census block unit to a county level block, and generates corresponding map
for each age group.

The query for the 1-D map cube:

Base-map=CT-B-Map

Base-table=CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID

Aggregate by Sum:No-of-people

Reclassify by CT-B.County

Data cube dimension Age

Cartographic preference Color=grayscale,No-of-map-per-cuboid=one per category,
Normalize=CT-B.County (Population)

The query for the 1-D data cube:

Select Geometric-union(CT-B.Boundary), Sum(No-of-people)
From CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID
Group by CT-B.County, Age

Table 9 and Figures 16, 17 show the map cube and the associated data cube generated
from the above map cube query. This 1-dimensional map cube allows the users to observe the
fraction of the age group within each county. Note that the householder population is normalized
within each county, which is specified by the cartographic preferences. A few interesting trends
can be observed from the map cube. Comparing age-groups shows that most counties have
more householders with middle-age , i.e. age groups 25-34, 35-44, 45-54, than other age groups.
Comparing counties shows that the central counties, Ramsey and Hennepin, have higher fraction
of seniors as well as children.

4.2.4 Map cube 2-D SQL query

In this dimension, there are sixty-three maps corresponding to the combination of the two
dimensions (seven age groups and nine income types). This query reclassifies the base map
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County Age | Age | Age | Age | Age | Age | Age | Total
Name <25 | 25-34 | 35-44 | 45-54 | 55-64 | 65-74 | >75

Anoka, 0.046 | 0.278 | 0.275 | 0.183 | 0.111 | 0.069 | 0.035 | 1
Carver 0.041 | 0.280 | 0.253 | 0.158 | 0.112 | 0.079 | 0.074 | 1
Dakota 0.052 | 0.300 | 0.273 | 0.163 | 0.101 | 0.066 | 0.043 | 1
Hennepin 0.063 | 0.265 | 0.235 | 0.142 | 0.112 | 0.099 | 0.080 | 1
Ramsey 0.064 | 0.252 | 0.223 | 0.135 | 0.114 | 0.108 | 0.092 | 1
Scott 0.038 | 0.295 | 0.270 | 0.165 | 0.097 | 0.073 | 0.059 | 1
Washington | 0.027 | 0.254 | 0.285 | 0.198 | 0.117 | 0.070 | 0.046 | 1

Table 9: Fraction of people in the same age group within each county, normalized within each

county
(a) Fraction of age group (b) Fraction of age group 25- (c) Fraction of age group 35-
<25 34 44

Figure 16: Fraction of people in the same age group within each county

from a census block unit to a county level block, and generates corresponding map for each

combination of age group and income level.
The query for the 2-D map cube:

Base-map=CT-B-Map

Base-table=CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID
Aggregate by Sum:No-of-people

Reclassify by CT-B.County

Data cube dimension Age, Income

Cartographic preference Color=grayscale,No-of-map-per-cuboid=one per category,

Normalize=CT-B.County (Population)

The query for the 2-D data cube:
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(a) Fraction of age group (b) Fraction of age group (c) Fraction of age group (d) Fraction of age group
45-54 55-64 65-74 >75

Figure 17: Fraction of people in the same age group within each county

Select Geometric-union(CT-B.Boundary), Sum(No-of-people)
From CT-B,Population

Where CT-B.Census-Track-ID = Population.Census-Track-ID
Group by CT-B.County, Age, Income

(a) Fraction of age group (b) Fraction of age group (c) Fraction of age group (d) Fraction of age group
<25 and income level <25 and income level <25 and income level <25 and income level
<$5,000 $5,000-89,999 $10,000-$14,999 $15,000-$24,999

Figure 18: Fraction of the age group <25, different income levels

Table 10 and Figures 18, 19 show the map cube and the associated data cube generated
from the above map cube query. This 2-dimensional map cube allows the users to observe the
fraction of age group and income level within each county, where the householder population
is normalized within each county. In the figures, we only display the maps with age group
less than 25. Within this age group, there are nine maps associated with these nine income
levels. There are few householders with age less than 25 and have income more than $100,000.
Therefore, in the Figure 19(e), we see a nearly empty map.
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County Age less $5,000 $10,000 $15,000 $25,000 $35,000 $50,000 $75,000 $100,000 County
than - - - - - - - or
Name Group $5,000 $9,999 $14,999 $24,999 $34,999 $49,999 $74,999 $99,999 more Total
Anoka <25 0.002 0.004 0.003 0.012 0.010 0.008 0.003 0.000 0.000 1
25-34 0.004 0.009 0.009 0.036 0.054 0.096 0.056 0.007 0.003
35-44 0.002 0.004 0.006 0.026 0.045 0.080 0.080 0.019 0.009
45-54 0.001 0.001 0.003 0.013 0.023 0.046 0.061 0.021 0.009
55-64 0.002 0.004 0.004 0.014 0.018 0.027 0.025 0.009 0.004
65-74 0.002 0.008 0.010 0.017 0.012 0.009 0.005 0.000 0.000
>75 0.003 0.010 0.006 0.007 0.003 0.002 0.000 3.613 0.004
Carver <25 0.000 0.007 0.001 0.009 0.008 0.008 0.003 0.000 0.000 1
25-34 0.002 0.007 0.009 0.034 0.057 0.085 0.060 0.014 0.007
35-44 0.002 0.003 0.007 0.018 0.042 0.069 0.067 0.024 0.014
45-54 0.001 0.002 0.003 0.017 0.021 0.028 0.042 0.021 0.017
55-64 0.002 0.004 0.006 0.013 0.017 0.022 0.027 0.007 0.009
65-74 0.004 0.010 0.013 0.019 0.011 0.009 0.007 0.001 0.001
>75 0.008 0.022 0.012 0.016 0.008 0.003 0.001 0.000 0.005
Dakota <25 0.001 0.005 0.006 0.012 0.010 0.010 0.004 0.000 0.000 1
25-34 0.003 0.008 0.007 0.035 0.058 0.093 0.073 0.014 0.005
35-44 0.002 0.004 0.005 0.022 0.038 0.069 0.083 0.028 0.018
45-54 0.001 0.001 0.003 0.011 0.016 0.032 0.056 0.023 0.016
55-64 0.002 0.002 0.003 0.014 0.015 0.018 0.024 0.009 0.009
65-74 0.002 0.006 0.008 0.016 0.012 0.009 0.005 0.001 0.001
>75 0.004 0.010 0.007 0.010 0.004 0.003 0.001 0.000 0.003
Hennepin <25 0.005 0.010 0.008 0.016 0.011 0.008 0.002 0.000 0.000 1
25-34 0.007 0.015 0.014 0.042 0.047 0.067 0.050 0.011 0.006
35-44 0.004 0.008 0.009 0.027 0.034 0.053 0.056 0.021 0.020
45-54 0.003 0.004 0.004 0.013 0.016 0.027 0.036 0.017 0.018
55-64 0.004 0.005 0.005 0.015 0.015 0.022 0.023 0.009 0.011
65-74 0.003 0.011 0.012 0.023 0.018 0.014 0.009 0.002 0.003
>75 0.005 0.020 0.013 0.018 0.008 0.006 0.004 0.000 0.004
Ramsey <25 0.005 0.011 0.009 0.016 0.010 0.008 0.002 0.000 0.000 1
25-34 0.007 0.016 0.016 0.051 0.049 0.058 0.040 0.007 0.003
35-44 0.005 0.010 0.009 0.029 0.035 0.053 0.053 0.015 0.011
45-54 0.003 0.004 0.005 0.013 0.018 0.028 0.033 0.016 0.013
55-64 0.004 0.007 0.007 0.016 0.017 0.023 0.022 0.009 0.007
65-74 0.005 0.014 0.014 0.026 0.017 0.017 0.009 0.002 0.002
>75 0.006 0.026 0.016 0.019 0.010 0.006 0.004 0.001 0.003
Scott <25 0.001 0.002 0.001 0.010 0.006 0.011 0.003 0.000 0.000 1
25-34 0.002 0.006 0.008 0.031 0.054 0.103 0.067 0.013 0.006
35-44 0.002 0.004 0.004 0.022 0.042 0.072 0.083 0.022 0.014
45-54 0.002 0.002 0.004 0.012 0.017 0.041 0.050 0.017 0.015
55-64 0.001 0.001 0.004 0.015 0.019 0.023 0.018 0.008 0.003
65-74 0.002 0.011 0.010 0.020 0.010 0.008 0.005 0.000 0.002
>75 0.007 0.021 0.009 0.013 0.004 0.002 0.000 0 0.004
Washington <25 0.001 0.004 0.002 0.005 0.005 0.005 0.001 0.000 0.000 1
25-34 0.002 0.008 0.007 0.029 0.048 0.077 0.061 0.012 0.005
35-44 0.002 0.004 0.006 0.018 0.033 0.074 0.093 0.028 0.021
45-54 0.001 0.002 0.004 0.011 0.018 0.041 0.064 0.031 0.022
55-64 0.002 0.003 0.003 0.014 0.015 0.024 0.026 0.014 0.010
65-74 0.001 0.011 0.008 0.016 0.012 0.009 0.007 0.001 0.001
>75 0.003 0.011 0.009 0.009 0.004 0.004 0.001 0.000 0.004

Table 10: Fraction of age group and income level within each county, normalized within each
county

5 Research Issues

In this section we elaborate on the research issues involving constructing spatial data ware-
house, and in particular map cube. The map cube inherits ideas from three different domains,
namely, data warehouse, visualization and GIS [4, 21, 13]. A data warehouse is defined as “a
subject-oriented, integrated, time-varying, non-volatile collection of data that is used primarily
in organizational decision making.” A spatial data warehouse is an extension to support spatial
databases. Visualization is essentially a mapping process from computer representations to per-
ceptual representations, choosing encoding techniques to maximize human understanding and
communication. The primary objective of data visualization is to gain insight into an informa-
tion space by mapping data onto graphical primitives [19]. A map is a graphic representation
of spatial relationships and spatial forms. Cartography is the art, science and technology of
making maps [15]. A GIS is best defined as a system which uses a spatial database to provide
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(a) Fraction of age (b) Fraction of age (c) Fraction of age (d) Fraction of age (e) Fraction of a

group <25 and in- group <25 and in- group <25 and in- group <25 and in- group
come level $25,000- come level $35,000- come level $50,000- come level $75,000- income
$34,999 $49,999 $74,999 $99,999 $100,000

Figure 19: Fraction of the age group <25, different income levels

answers to queries of geographical nature [7]. The three-way interaction model is shown in
figure 20. The tertiary intersection is our topic “map cube.”

Figure 20: The relationship of Map Cube with three parent domains

5.1 Data Warehouse
5.1.1 Distinction between dimensions and attributes

To build a data cube from the original dataset, not all the attributes in the table can be
represented as dimensions in the cube. Here, we define the concept of full functional depen-
dency. A functional dependency X — Y is a full functional dependency if the removal of any
attribute A from X means that the dependency does not hold any more. For example, in
figure 21, we have three sets of full functional dependency, {Model,Year,Region}—{Profits},
{Model,Year,Region}—{# of Customers}, and {Model,Year,Region}—{Sales}. The attributes
Model, Year, and Region can be used as the dimensions in the aggregate of Profits, # of
customers, and Sales.

5.1.2 Are all nodes in dimension hierarchy meaningful in map cubes?

For geographic data, the nodes in higher dimension may not be meaningful. The reason is
two-folded. First, the sample size is low in higher dimension, so the statistical significance
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Model | Year | Region| Profit | # of Customers| Sales

w | [ |
fd2 | | | T [

fd3 | | |

Figure 21: Example of functional dependency

is decreased, such as the mean and median functions. Secondly, the privacy issue, as in the
case of census data, only the block or census track data can be revealed, but not the personal
information. However, this constraint could be violated in high dimensions of the map cube.
We illustrate this with the following example.

County | Census Track | Age Income Race | No of people
Dakota | 24 35 - 44 | §75,000 to $99,999 | White | 2
Dakota | 24 35 - 44 | $75,000 to $99,999 | Black |1
Dakota | 24 35 - 44 | §75,000 to $99,999 | Asian | 2
Dakota | 24 35 - 44 | $100,000 or more | White | 2
Dakota | 24 35 - 44 | $100,000 or more | Black | 2
Dakota | 24 35 - 44 | $100,000 or more | Asian | 1

Table 11: 3D data cube

County | Census Track | Age Income No of people
Dakota | 24 35 - 44 | $75,000 to $99,999 | 5
Dakota | 24 35 - 44 | $100,000 or more | 5

Table 12: 2D data cube

Table 11 shows the data cube of the census track, from which we can easily infer the income
of a specific person if there is only one person in a certain category, and this will violate the
issue of personal privacy. Table 12 shows the aggregate data of the 2D data cube, which satisfies
the personal privacy constraint. So while exploring the census data, the answer to the question,
should the map cube generate the full detail cube, is clearly no as it violates the privacy
constraint. This brings on another question “To what extent can the users explore?” While
this is subject specific, the map cube should provide constraint based exploration mechanism.

5.1.3 Given a cuboid in the dimension hierarchy, is the tabular representation
adequate?

Figure 22 shows the tabular and cube views of the traffic data. The tabular view provides a
scroll bar for browsing the whole combination of the categories, including the ALL function
in each dimension. The data can be sorted on each dimension, and the users can perform the
Select, Project, and Join operations. In contrast, the cube view of the traffic data provides
additional operations, such as slice or dice. Given the dimension lattice, the user will browse
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Figure 22: Tabular view and cube view

the subcube by using the slice or dice operation. Which representation is more suitable for
representing the map cube and more convenient for users to browse the requested information,
tabular or cube view?

5.1.4 How can the Map Cube be efficiently implemented?

A map cube is an extension of a conventional data cube, which utilizes cartographic techniques
for efficient exploration of spatial data. The conventional data cube operations are designed to
work with the data stored in relational DBMS, which deals with few well-defined data types,
but not with geographic data types. Therefore, new algorithms are needed when dealing with
spatial data in order to provide the tabular or pivot view of the map cube. Furthermore, a map
cube and an ordinary data cube require different implementation algorithms.

Selection of Groupbys for Precomputation

Each cell of the map cube is a view consisting of an aggregation of interest. The values of many
of these cells are dependent on the values of other cells in the map cube. A query optimization
technique is used to materialize some or all of these cells rather than computing them from raw
data cubes. The important objective is to develop techniques for optimizing the space-time
tradeoff when implementing a lattice of views, which is known to be an NP-complete problem.
Harinarayan, et al [10] investigated the issue of which cells(views) to materialize when it is
too expensive to materialize all views. Gupta [9] proposed a framework a framework for the
selection of views to optimize the query response time within polynomial time.

The analysis of whether a cuboid should be selected for materalization in a spatial data cube
is similar to that in a non-spatial one. The spatial computation, such as region merging, map
overlaying, spatial join, could be expensive, especially when a large number of spatial objects
are involved. There is an additional factor to be considered for a spatial data cube: the cost of
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on-line computation of a particular spatial cuboid. Han, et al [11] proposed some techniques for
selective materalization of the spatial computation results. They assumed that a set of cuboids
have been selected for materalization using an extended cuboid-selection algorithm similar to
the one in [10], and examined how to determine which sets of mergeable spatial objects should
be precomputed. Two algorithms, pointer intersection and object connection, are worked out
for the selection of precomputed objects.

5.1.5 Is the location one dimension or two or more?

Figure 23 shows how to aggregate the data on a three dimensional Earth space. Initially, the
cuboid has three dimensions < Latitude,Longitude,Altitude>. Then the data is aggregated
into two dimensions. At the bottom level, all data are summarized into one point.

Space = < Latitude, Longitude, Altitudesp

Lat-Long® Lat-Alt&p  Long-Alt

Aggregate

Latitude®  Longitude  Altitude$®

N

Non-Spatial ®

& : Meaningful in the spatial application
Figure 23: The space lattice

The cuboids in the lattice that are meaningful for certain applications, e.g. weather analysis,
are marked. For example, groupby Altitude is important for analyzing weather patterns in each
Elevation. However, it makes no sense to group by Longitude. In designing a map cube, we
can either allow the users to explore all subspaces(cuboids) of the three dimensional geographic
space, or we may restrict subspaces(cuboids) to meaningful ones.

Choice

Allow all sub-space

Restrict to useful subspace

be violating geographic

constraints

Computation Effort High Low, since useless subspaces
are not computed
Semantic Integrity Low, since some maps | High, all maps are
generated in map-cube may | meaningful

Table 13: Decision to allow all sub-spaces to be computed or not
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5.2 Cartographic Visualization

As discussed in the previous sections, a map is the core output of a map cube. A map cube
can be defined as a graphic depiction of all or part of geographic realm in which the real-world
features have been replaced with symbols in their correct spatial location at a reduced scale.
The process of creating graphic symbols to represent feature attribute values is part of what
we call symbolization. The symbolization process is carried out after applying classification,
simplification and exaggeration processes to the database selected for mapping. Hence we have
two separate components of the map design process. The first encodes information, and is
an abstract process related to generalization. The second involves conceptual constraints and
focuses on graphic representation. Both components have a theoretical basis in the field of
semiotics. Semiotics addresses the relations among symbols, signs, and meanings, and forms an
appropriate basis for cartographic symbolization. Geographic features have a dimensionality
ranging from zero to three. A point feature is dimensionless (zero dimension) while a line
feature has one dimension. An area feature has two dimensions and a volume feature has three
dimensions.

5.2.1 Issues involved in visualization of geographic features

Geographic features conceived as points (eg. lamp post, building or even city depending on
scale) are portrayed by point symbols. On a nominal (qualitative) scale, points can be de-
picted by symbols with differentiating visual variables (like shape, hue(color) and orientation).
Quantitative point attribute data can be symbolized by using primary visual variable size. Ge-
ographic features conceived as lines (e.g. rivers, roads, ...) can be portrayed by line symbols.
Nominally scaled line features can be depicted by primary visual variables (hue and shape)
and quantitative line features are symbolized using visual variables of size and hue. Features
conceived as areas (like thematic maps, or remote sensing images) are depicted by secondary
visual variables (texture, arrangement, and orientation). Multi-channel images are shown as
either black and white (with varying gray shades), or RGB (by assigning different channels to
each of red, blue and green color guns). Now several questions arise:

e [s the classification and symbolization process sufficient to visualize complex query maps
resulting from aggregation of multi-dimensions?.

e How can a glyph family be designed in a way such that the members can be related in a
manner similar to the data cube dimension hierarchy?

o What is the effect of data cube on map legend design and other cartographic issues?

e How to visualize the trends across spatial dimensions, as well as non-spatial dimensions?

In the map cube, not only do the users compare different measures in all regions within one
map, but they may also be interested in measuring the variations across different maps. It is
not easy to show both the trends within a map and across different maps at the same level.

For example, Table 14 shows the population ratio for each age group in each county. The
views that users may be interested in are the variation across different counties within that
same age group, and the variation across different age groups in the same county. The most
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suitable cartographic representation is a map of counties, and within each county, there is a
pie-chart for different age groups.

County-name | under 25 | 25 to 34 | 35 to 44 | 45 to 54 | 55 to 64 | 65 to 74 | 75 and over
Anoka 0.045 0.277 0.274 0.183 0.110 0.068 0.039
Carver 0.041 0.279 0.251 0.157 0.111 0.078 0.079
Dakota 0.051 0.299 0.272 0.162 0.101 0.066 0.045
Hennepin 0.063 0.264 0.235 0.142 0.112 0.098 0.082
Ramsey 0.064 0.253 0.225 0.136 0.115 0.109 0.095
Scott 0.037 0.294 0.269 0.164 0.096 0.073 0.063
Washington | 0.027 0.254 0.284 0.197 0.116 0.070 0.049

Table 14: Fraction of people in the same age group within each county

5.3 Geographic Information System
5.3.1 Which application can benefit from a map cube?

In our previous examples, we have shown the usefulness of map cube in analyzing traffic and
census data. In summary, a map cube can be applied to any spatial application which needs
comparisons between different attributes and requires some aggregation functions within each
attribute.

5.3.2 How to integrate new aggregate functions into a map cube?

Aggregate operations are domain specific. Thus, the aggregate operations in a conventional data
cube, which can be realized by a groupby, may not be directly applicable to spatial databases.
For example, the arithmetic addition of two images may not give a meaningful result, whereas
the same operation on an attribute (say salary) in a database will be valid. Therefore, it is
necessary to find and integrate suitable operators for spatial databases. In this section we
discuss some of these issues.

Applied Spatial Statistics: Applied spatial statistics deals with those methods that are ap-
plicable to the data that are spatially correlated. Some of the methods which are interesting
to spatial data warehouses include moving window statistics (e.g. calculating mean, variance
etc,. within a small moving window), spatial clustering, cross-correlation, cross-covariance, spa-
tial autocorrelation and spatial sampling methods. Examples where these methods are needed
include calculating the number of neighbors within a distance D, and grouping crimes by the
nearest police station etc.

Local operation: A local operation acts upon one or more spatial field functions of the field-
model to produce a new field. The value of the new field at a location is dependent only on
the value of the original field at that location. Examples include pointwise sums, differences in
maximums, minimums, or means, etc.

Focal operation: For a focal operation, the attribute value derived at a location z may depend
not only on the attributes of the input spatial field function at z, but also on the attributes of
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these functions in the neighborhood n(z) of . Examples include slope, aspect, and weighted
average of neighborhood.

Zonal operation: A zonal operation aggregates values of a field over each of a set of zones
in the framework. Examples include sum, mean, or maximum of field value in each zone.

Geometric Union, Geometric Intersection: Aggregation in spatial dimension includes geo-
metric union and intersection. For example, at a lower dimension we may have a state boundary
map and in the next dimension we may have country maps which are derived from state bound-
ary maps by applying geometric union operation( a spatial aggregate function).

NDVI: In the case of satellite images, the normalized density vegetation index, obtained
by rationing the difference between near infra-red and red to their sum. This rationed image
highlights (or distinguishes) vegetative regions from non vegetative regions.

NearInfraredData — VisibleData

NDVI =
v NearInfraredData + VisibleData

(1)

The higher values of the NDVI reveal pixels dominated by high proportions of green biomass.

OGIS: Much work has been done over the last decade on the design of spatial Abstract Data
Types(ADTs) and their embedding in a query language. Recently, the OGIS [18] consortium
has proposed a specification for incorporating 2D geospatial ADTs in SQL. The present OGIS
standard is not sufficient to construct complex spatial data warehouses, which include many
other data types and operations not covered by OGIS.

5.3.3 Is scale operation the same as concept hierarchy?

The scale operation changes the size of the object in the embedding plane without changing the
shape, position or orientation of the object. For example, the scaling of 'a’ in the z-direction
and b’ in the y-direction is effected by the rule:(z,y) — (az, by). To build the concept hierarchy
by the scale operation, we plot the fixed size grid in the embedding plane. Initially, all the map
objects are within one grid, which is the top level in the hierarchy. As we scale up the map,
the map will extend to the surrounding grids, by which we construct the lower level in the
hierarchy. The effect of scaling up/down can also be accomplished by changing the size of the
grid in the embedding plane.

6 Conclusion and Future Work

The cube operator generalizes and unifies several common and popular concepts: aggregation,
group-by, histogram, roll-up, drill-down, and cross-tab. A map is the core of Geographic Infor-
mation System. In this paper, we extended the concept of data cube to spatial domain via the
proposed “map cube” operator, which is built from the requirements of spatial data warehouses.
We defined the “map cube” operator, provided the grammar and translation rules, and used the
census data as an application of map cube. Since map cube inherits ideas from three different
domains, namely, data warehouse, visualization and GIS, we also discussed the research issues
involved with these domains. In the future, we would like to explore the implementation and
application of map cube in a spatial data warehouse.
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