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Abstract

Modeling spatial context (e.g., autocorrelation) is a key challenge in classification problems
that arise in geospatial domains. Markov Random Fields (MRFs) is a popular model for in-
corporating spatial context into image segmentation and land-use classification problems. The
spatial autoregression model (SAR), which is an extension of the classical regression model for
incorporating spatial dependence, is popular for prediction and classification of spatial data in
regional economics, natural resources, and ecological studies. There is little literature comparing
these alternative approaches to facilitate the exchange of ideas (e.g., solution procedures). We
argue that the SAR model makes more restrictive assumptions about the distribution of feature
values and class boundaries than MRF. The relationship between SAR and MRF is analogous to
the relationship between regression and Bayesian classifiers. This paper provides comparisons
between the two models using a probabilistic and an experimental framework.

Keywords: Spatial Context, Spatial Data Mining, Markov Random Fields, Spatial Autoregres-
sion.

1 Introduction

Spatial databases (e.g., remote sensing imagery, maps, census data) are an important subclass of
multimedia databases due to several reasons. First, the industry-wide Structured Query Language
Multimedia standard (SQL/MM) [20] includes spatial data types along with traditional image,
audio and video data types. Secondly, spatial concepts and techniques are often crucial in indexing
and retrieval of image and video databases. Finally, according to several estimates, spatial data
constitutes almost 80% of all digital data including multimedia data.

Widespread use of spatial databases [28], is leading to an increasing interest in mining interesting
and useful but implicit spatial patterns[14, 19, 10, 26]. Traditional data mining algorithms[1]
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often make assumptions (e.g., independent, identical distributions) which violate Tobler’s first
law of geography: everything is related to everything else but nearby things are more related
than distant things[30]. In other words, the values of attributes of nearby spatial objects tend
to systematically affect each other. In spatial statistics, an area within statistics devoted to the
analysis of spatial data, this is called spatial autocorrelation[7]. Knowledge discovery techniques
which ignore spatial autocorrelation typically perform poorly in the presence of spatial data. Often
the spatial dependencies arise due to the inherent characteristics of the phenomena under study,
but in particular they arise due to the fact that the spatial resolution of imaging sensors are finer
than the size of the object being observed. For example, remote sensing satellites have resolutions
ranging from 30 meters (e.g., the Enhanced Thematic Mapper of the Landsat 7 satellite of NASA)
to one meter (e.g., the IKONOS satellite from Spacelmaging), while the objects under study (e.g.,
Urban, Forest, Water) are often much larger than 30 meters. As a result, per-pixel-based classifiers,
which do not take spatial context into account, often produce classified images with salt and pepper
noise. These classifiers also suffer in terms of classification accuracy.

There are two major approaches for incorporating spatial dependence into classification/prediction
models: spatial autoregression models [2], [15], [16], [17], [23], [24] and Markov Random Field
models [5], [6], [9], [13], [18], [29], [31]. Here we want to make a note regarding the terms spa-
tial dependence and spatial contert. These words originated in two different communities. Natural
resource analysts and statisticians use spatial dependence to refer to spatial autocorrelation and the
image processing community uses spatial context to mean the same. We use spatial context, spatial
dependence, and spatial autocorrelation interchangeably to relate to readers of both communities.
We also use classification and prediction interchangeably. Natural resource scientists, ecologists and
economists have incorporated spatial dependence in spatial data analysis by incorporating spatial
autocorrelation into logistic regression models (called SAR). The Spatial Autoregressive Regression
(SAR) model states that the class label of a location is partially dependent on the class labels of
nearby locations and partially dependent on the feature values. SAR tends to provide better models
than logistic regression in terms of achieving higher confidence (R2). Similarly, Markov Random
Fields (MRFs) is a popular model for incorporating spatial context into image segmentation and
land-use classification problems. Over the last decade, several researchers [29], [13], [31] have
exploited spatial context in classification using Markov Random Fields to obtain higher accuracies
over their counterparts (i.e., non-contextual classifiers). MRFs provide a uniform framework for
integrating spatial context and deriving the probability distribution of interacting objects.

There is little literature comparing alternative models for capturing spatial context, hampering
the exchange of ideas across communities. For example, solution procedures [17] for SAR tend to be
computationally expensive just like the earlier stochastic relaxation [9] approaches for MRF despite
optimizations such as sparse-matrix techniques [23], [24]. Recently, new solution procedures, (e.g.,
graph cuts [5]), have been proposed for MRF. An understanding of the relationship between MRF
and SAR may facilitate the development of new solution procedures for SAR. It may also likely
lead to cross fertilization of other advances across the two communities.

We compare the SAR and MRF models in this paper using a common probabilistic framework.
SAR and MRF use identical models of spatial contexts for spatial locations. However, SAR makes
more restrictive assumptions about the probability distributions of feature values as well as the
class boundaries. We show that the SAR assumption of the conditional probability of a feature
value given a class label means that SAR belongs to the exponential family of models, (e.g., Gaus-
sian, Binomial). In contrast, MRF models can work with many other probability distributions.
SAR also assumes the linear separability of classes in a transformed feature space resulting from a
spatial smoothing of feature values based on autocorrelation parameters. MRF can be used with



non-linear class boundaries. Readers familiar with classification models which ignore spatial con-
text may find the following analogy helpful. The relationship between SAR and MRF is similar to
the relationship between logistic regression and Bayesian classifiers.

Outline and Scope of the Paper:

The rest of the paper is organized as follows. In Section 1.1 we introduce a motivating example
which will be used throughout the paper. In Section 1.2 we formally define the location predic-
tion problem. Section 2 presents a comparison of classical approaches that do not consider spatial
context, namely logistic regression and Bayesian classifiers. In Section 3 we present two modern
approaches that model spatial context, namely Spatial Autoregressive Regression (SAR) [15], and
Markov Random Fields. In Section 4 we compare and contrast the SAR and MRF models in
a common probabilistic framework and provide experimental results. Finally, Section 5 provides
conclusions and future research directions.

This paper focuses on a comparison of SAR and MRF. Comparison of other models of spatial
context, and evaluation and translation of new solution procedures for MRF, (e.g., Graph cuts, to
new solution procedures for SAR are beyond the scope of this paper. We plan to address these
issues in future work.

1.1 An Illustrative Application Domain

First we introduce an example which will be used throughout this paper to illustrate the different
concepts in spatial data mining. We are given data about two wetlands, named Darr and Stubble,
on the shores of Lake Erie in Ohio USA in order to predict the spatial distribution of a marsh-
breeding bird, the red-winged blackbird (Agelaius phoeniceus) [21], [22]. The data was collected
from April to June in two successive years, 1995 and 1996.

A uniform grid was imposed on the two wetlands and different types of measurements were
recorded at each cell or pixel. In total, the values of seven attributes were recorded at each cell.
Domain knowledge is crucial in deciding which attributes are important and which are not. For
example, Vegetation Durability was chosen over Vegetation Species because specialized knowledge
about the bird-nesting habits of the red-winged blackbird suggested that the choice of nest location
is more dependent on plant structure and plant resistance to wind and wave action than on the
plant species.

An important goal is to build a model for predicting the location of bird nests in the wetlands.
Typically, the model is built using a portion of the data, called the Learning or Training data,
and then tested on the remainder of the data, called the Testing data. In this study we build
a model using the 1995 Darr wetland data and then tested it 1995 Stubble wetland data. In the
learning data, all the attributes are used to build the model and in the training data, one value
is hidden, in our case the location of the nests. Using knowledge gained from the 1995 Darr data
and the value of the independent attributes in the test data, we want to predict the location of the
nests in 1995 Stubble data.

In this paper we focus on three independent attributes, namely Vegetation Durability, Distance
to Open Water, and Water Depth. The significance of these three variables was established using
classical statistical analysis [22]. The spatial distribution of these variables and the actual nest
locations for the Darr wetland in 1995 are shown in Figure 1. These maps illustrate the following
two important properties inherent in spatial data. The value of attributes which are referenced by
spatial location tend to vary gradually over space. While this may seem obvious, classical data
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Figure 1: (a) Learning dataset: The geometry of the Darr wetland and the locations of the nests,
(b) The spatial distribution of vegetation durability over the marshland, (c¢) The spatial distribution
of water depth, and (d) The spatial distribution of distance to open water.

mining techniques, either explicitly or implicitly, assume that the data is independently generated.
For example, the maps in Figure 2 show the spatial distribution of attributes if they were indepen-
dently generated. Previous studies have evaluated classical data mining techniques such as logistic
regression[22], neural networks|[21], decision trees, and classification rules to build prediction models
for bird nesting locations. Logistic regression was used because the dependent variable is binary
(nest/no-nest) and the logistic function “squashes” the real line onto the unit-interval. The values
in the unit-interval can then be interpreted as probabilities. These studies concluded that with the
use of logistic regression, the nests could be classified at a rate 24% better than random|[21]. In
general, logistic regression and neural network models have performed better than decision trees
and classification rules on this dataset. The fact that classical data mining techniques ignore spa-
tial autocorrelation and spatial heterogeneity in the model-building process is one reason why these
techniques do a poor job. A second, more subtle, but equally important reason is related to the
choice of the objective function to measure classification accuracy. For a two-class problem, the
standard way to measure classification accuracy is to calculate the percentage of correctly classified
objects. This measure may not be the most suitable in a spatial context. Spatial accuracy—how far
the predictions are from the actuals—is as important in this application domain due to the effects
of discretizations of a continuous wetland into discrete pixels, as shown in Figure 3. Figure 3(a)
shows the actual locations of nests and 3(b) shows the pixels with actual nests. Note the loss of
information during the discretization of continuous space into pixels. Many nest locations barely
fall within the pixels labeled ‘A’ and are quite close to other blank pixels, which represent 'no-nest’.
Now consider two predictions shown in Figures 3(c) and 3(d). Domain scientists prefer prediction
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Figure 2: Spatial distribution satisfying random distribution assumptions of classical regression
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Figure 3: An example showing different predictions: (a)The actual locations of nests, (b)Pixels
with actual nests, (c)Locations predicted by one model, (d)Locations predicted by another model.
Prediction (d) is spatially more accurate than (c).

3(d) over 3(c), since predicted nest locations are closer on average to some actual nest locations.
The classification accuracy measure cannot distinguish between 3(c) and 3(d), and a measure of
spatial accuracy is needed to capture this preference.

1.2 Location Prediction: Problem Formulation

The Location Prediction problem is a generalization of the nest location prediction problem. It
captures the essential properties of similar problems from other domains including crime prevention
and environmental management. The problem is formally defined as follows:

Given:
e A spatial framework S consisting of sites {s1,..., sy} for an underlying geographic space
G.

e A collection X of explanatory functions fx, : S — Rtk =1,...K. RF is the range
of possible values for the explanatory functions. Let X = [1, X], which also includes a
constant vector along with explanatory functions.

e A dependent class variable fc: S - C = {c1,...cm}

¢ An value for parameter «, relative importance of spatial accuracy.
Find: Classification model: fc :R'x...RF > C.

Objective: Maximize similarity (mapiieg(fc(fxl, -5 fx)),map(fc))
= (1 — a) classification_accuracy (fc, fo) + (o )spatial_accuracy ((fe, fo)



Constraints:

1. Geographic Space S is a multi-dimensional Euclidean Space !.

2. The values of the explanatory functions, fx,,..., fx, and the dependent class variable,
fc, may not be independent with respect to the corresponding values of nearby spatial
sites (i.e., spatial autocorrelation exists).

3. The domain R* of the explanatory functions is the one-dimensional domain of real
numbers.

4. The domain of dependent variable, C' = {0,1}.

The above formulation highlights two important aspects of location prediction. It explicitly
indicates that (i) the data samples may exhibit spatial autocorrelation and, (ii) an objective function
(i.e., a map similarity measure), is a combination of classification accuracy and spatial accuracy.
The similarity between the dependent variable fc and the predicted variable fc is a combination
of the “traditional classification” accuracy and representation-dependent “spatial classification”
accuracy. The regularization term « controls the degree of importance of spatial accuracy and
is typically domain dependent. As a — 0, the map similarity measure approaches the traditional
classification accuracy measure. Intuitively, a captures the spatial autocorrelation present in spatial
data.

The study of the nesting locations of red-winged black birds[21, 22] is an instance of the location
prediction problem. The underlying spatial framework is the collection of 5m X 5m pixels in the grid
imposed on the marshes. Examples of the explanatory variables include water depth, vegetation
durability index, and distance to open water, and examples of dependent variables include nest
locations. The explanatory and dependent variables exhibit spatial autocorrelation, (e.g., gradual
variation over space, as shown in Figure 1). Domain scientists prefer spatially accurate predictions
which are closer to actual nests, (i.e., a > 0).

2 Classification Without Spatial Dependence

In this section we briefly review two major statistical techniques that have been commonly used in
the classification problem: logistic regression and Bayesian classifiers. These models do not consider
spatial dependence. Readers familiar with these two models will find it easier to understand the
comparison between SAR and MRF presented later.

2.1 Logistic Regression Modeling

Logistic regression decomposes f(; into two parts, namely linear regression and logistic transforma-
tion. Given an n—vector y of observations and an n x m matrix X of explanatory data, classical
linear regression models the relationship between y and X as

y=XB+e

where 8 = (Bo, . - -, Bm)". The standard assumption on the error vector € is that each component
is generated from an independent, identical, zero-mean normal distribution (i.e., ¢ = N (0, 0?)).

!The entire surface of the Earth cannot be modeled as a Euclidean space but locally the approximation holds true.



Figure 4: Two-dimensional feature space, with two classes (+:nest, -:no-nest) that can be separated
by a linear surface

When the dependent variable is binary, as is the case in the “bird-nest” example, the model is
transformed via the logistic function and the dependent variable is interpreted as the probability
of finding a nest at a given location. Thus, Pr(c;|y) = 2. This transformed model is referred to

Ttev -
as logistic regression [2].

The fundamental limitation of classical regression modeling is that it assumes that the sample
observations are independently generated. This may not be true in the case of spatial data. As
we have shown in our example application, the explanatory and independent variables show a
moderate to high degree of spatial autocorrelation(see Figure 1). The inappropriateness of the
independence assumption shows up in the residual errors, the ¢;’s. When the samples are spatially
related, the residual errors reveal a systematic variation over space (i.e., they exhibit high spatial
autocorrelation). This is a clear indication that the model was unable to capture the spatial
relationships existing in the data. Thus the model may be a poor fit to the geospatial data.
Incidentally, the notion of spatial autocorrelation is similar to that of time autocorrelation in time
series analysis but is more difficult to model because of the multi-dimensional nature of space. A
statistic that quantifies spatial autocorrelation is introduced in the spatial autoregression model

(SAR).

The logistic regression finds a discriminant surface, which is a hyperplane in feature space, as
shown in Figure 4. Formally, a logistic-regression-based classifier is equivalent to a perceptron
[12], [27], [11], which can only separate linearly separable classes.

2.2 Bayesian Classifiers

Bayesian classifiers estimate fc using Bayes’ rule and compute the probability of the class labels
¢; given the data X as:

Pr(X|c;)Pr(c;)
Pr(X) S

Pr(ci|X) =

In the case of the location prediction problem, where a single class label is predicted for each
location, a decision step can assign the most-likely class chosen by Bayes’ rule to be the class for a
given location. This solution is often referred to as the maximum a posteriori estimate(MAP).

Given a learning dataset, Pr(c;) can be computed as a ratio of the number of locations s; with



fc(sj) = ¢ to the total number of locations in S. Pr(X|c;) also can be estimated directly from the
data using histograms or a kernel density estimate over the counts of locations s; in S for different
values X of features and different class labels ¢;. This estimation requires a large training set if the
domains of features fx, allow a large number of distinct values. A possible approach is that when
the joint-probability distribution is too complicated to be directly estimated, then a sufficiently
large number of samples from the conditional probability distributions can be used to estimate the
statistics of the full joint probability distribution 2. Pr(X) need not be estimated separately. It
can be derived from estimates of Pr(X|c;) and Pr(c;). Alternatively, it may be left as unknown,
since for any given dataset, Pr(X) is a constant that does not affect the assignment of class labels.

Classifier Classifier
Criteria Logistic Regression Bayesian
Input f$17“"f$)e’f€ lea"'afzkafc
Intermediate Result B Pr(c;), Pr(X|c;) using kernel esti.
Output Pr(c;|X) based on Pr(c;|X) based on Pr(c;) and Pr(X]|e;)
Decision Select most likely class Select most likely class

for a given feature value | for a given feature value
Assumptions
- Pr(Xl|c;) Exponential Family -
- class boundaries linearly separable -

in feature space
- autocorrelation in class labels | none none

Table 1: Comparison of Logistic Regression and Bayesian Classifiers

Table 1 summarizes key properties of logistic-regression-based classifiers and Bayesian classi-
fiers. Both models are applicable to the location prediction problem if spatial autocorrelation is
insignificant. However, they differ in many areas. Logistic regression assumes that the Pr(X|c;)
distribution belongs to an exponential family (e.g., binomial, normal) whereas Bayesian classifiers
can work with arbitrary distributions. Logistic regression finds a linear classifier specified by £
and Bayesian classifier is most effective when classes are not linearly separable in feature space,
since it allows non-linear interaction among features in estimating Pr(X|c;). Logistic regression
can be used with a relatively small training set since it estimates only (k + 1) parameters (i.e., /3).
Bayesian classifiers usually need a larger training set to estimate Pr(X|c;) due to the potentially
large size of the feature space. In many domains, parametric probability distributions (e.g., normal
[29], Beta) are used with Bayesian classifiers if large training datasets are not available.

3 Modeling Spatial Dependencies

Several previous studies [13], [29] have shown that modeling of spatial dependency (often called
context) during the classification process improves overall classification accuracy. Spatial context
can be defined by the relationships between spatially adjacent pixels in a small neighborhood.
The spatial relationship among locations in a spatial framework is often modeled via a conti-
guity matrix. A simple contiguity matrix may represent the neighborhood relationship defined
using adjacency, Euclidean distance, etc. Example definitions of neighborhood using adjacency

*While this approach is very flexible and the workhorse of Bayesian statistics, it is a computationally expensive
process. Furthermore, at least for non-statisticians, it is a non-trivial task to decide what “priors” to choose and
what analytic expressions to use for the conditional probability distributions.
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Figure 5: A spatial framework and its four-neighborhood contiguity matrix

include four-neighborhood and eight-neighborhood. Given a gridded spatial framework, the four-
neighborhood assumes that a pair of locations influence each other if they share an edge. The
eight-neighborhood assumes that a pair of locations influence each other if they share either an
edge or a vertex.

Figure 5(a) shows a gridded spatial framework with four locations, namely A, B, C, and D.
A binary matrix representation of a four-neighborhood relationship is shown in Figure 5(b). The
row normalized representation of this matrix is called a contiguity matrix, as shown in Figure 5(c).
Other contiguity matrices can be designed to model neighborhood relationship based on distance.
The essential idea is to specify the pairs of locations that influence each other along with the relative
intensity of interaction. More general models of spatial relationships using cliques and hypergraphs
are available in the literature [31].

3.1 Logistic Spatial Autoregression Model(SAR)

Logistic SAR decomposes fc into two parts, namely Spatial autoregression and logistic transfor-
mation. We first show how spatial dependencies are modeled in the framework of logistic regression
analysis. In the spatial autoregression model, the spatial dependencies of the error term, or, the
dependent variable, are directly modeled in the regression equation[2]. If the dependent values y;
are related to each other, then the regression equation can be modified as

y=pWy+XB+e. (2)

Here W is the neighborhood relationship contiguity matrix and p is a parameter that reflects
the strength of spatial dependencies between the elements of the dependent variable. After the
correction term pWy is introduced, the components of the residual error vector € are then assumed
to be generated from independent and identical standard normal distributions. As in the case of
classical regression, the SAR equation has to be transformed via the logistic function for binary
dependent variables.

We refer to this equation as the Spatial Autoregression Model (SAR). Notice that when
p = 0, this equation collapses to the classical regression model. The benefits of modeling spatial
autocorrelation are many: The residual error will have much lower spatial autocorrelation (i.e.,
systematic variation). With the proper choice of W, the residual error should, at least theoretically,
have no systematic variation. If the spatial autocorrelation coefficient is statistically significant,
then SAR will quantify the presence of spatial autocorrelation. It will indicate the extent to which
variations in the dependent variable (y) are explained by the average of neighboring observation



values. Finally, the model will have a better fit, (i.e., a higher R-squared statistic). We compare
SAR with linear regression for predicting nest location in Section 4.

A mixed model extends the general linear model by allowing a more flexible specification of
the covariance matrix of e. The SAR model can be extended to a mixed model that allows for
explanatory variables from neighboring observations [16]. The new model (MSAR) is given by

y=pWy+ XB+WXy+e (3)

The marginal impact of the explanatory variables from the neighboring observations on the
dependent variable y can be encoded as a k * 1 parameter vector +.

Solution Procedures

The estimates of p and B can be derived using maximum likelihood theory or Bayesian statis-
tics. We have carried out preliminary experiments using the spatial econometrics matlab package?,
which implements a Bayesian approach using sampling-based Markov Chain Monte Carlo (MCMC)
methods[17]. Without any optimization, likelihood-based estimation would require O(n?®) opera-
tions. Recently [23], [24], and [16] have proposed several efficient techniques to solve SAR.
The techniques studied include divide and conquer, and sparse matrix algorithms. Improved per-
formance is obtained by using LU decompositions to compute the log-determinant over a grid of
values for the parameter p by restricting it to [0, 1].

3.2 Markov Random Field based Bayesian Classifiers

Markov random field based Bayesian classifiers estimate classification model f(; using MRF and
Bayes’ rule. A set of random variables whose interdependency relationship is represented by an
undirected graph (i.e., a symmetric neighborhood matrix) is called a Markov Random Field [18].
The Markov property specifies that a variable depends only on its neighbors and is independent of
all other variables. The location prediction problem can be modeled in this framework by assuming
that the class label, I; = fc(s;i), of different locations, s;, constitute an MRF. In other words,
random variable [; is independent of I; if W (s;,s;) = 0.

The Bayesian rule can be used to predict [; from feature value vector X and neighborhood class
label vector L; as follows:

Pr(X|l;, L;) Pr(l;| L;)

Pr(l]| X, L;) = Pr(X) (4)

The solution procedure can estimate Pr(l;|L;) from the training data, where L; denotes a set
of labels in the neighborhood of s; excluding the label at s;, by examining the ratios of the fre-
quencies of class labels to the total number of locations in the spatial framework. Pr(X|l;, L;) can
be estimated using kernel functions from the observed values in the training dataset. For reliable
estimates, even larger training datasets are needed relative to those needed for the Bayesian classi-
fiers without spatial context, since we are estimating a more complex distribution. An assumption
on Pr(Xl|l;, L;) may be useful if the training dataset available is not large enough. A common
assumption is the uniformity of influence from all neighbors of a location. For computational ef-
ficiency it can be assumed that only local explanatory data X (s;) and neighborhood label L; are

3We would like to thank James Lesage (http://www.spatial-econometrics.com/) for making the matlab toolbox
available on the web.

10



relevant in predicting class label [; = fo(s;). It is common to assume that all interaction between
neighbors is captured via the interaction in the class label variable. Many domains also use specific
parametric probability distribution forms, leading to simpler solution procedures. In addition, it is
frequently easier to work with a Gibbs distribution specialized by the locally defined MRF through
the Hammersley-Clifford theorem [4].

Solution Procedures

Solution procedures for the MRF Bayesian classifier include stochastic relaxation [9], iterated
conditional modes [3], dynamic programming [8], highest confidence first [6] and graph cut [5].
We have used the graph cut method and provided its description in Appendix I.

4 Comparison of SAR and MRF Bayesian Classifiers

Both SAR and MRF Bayesian classifiers model spatial context and have been used by different
communities for classification problems related to spatial datasets. We compare these two ap-
proaches to modeling spatial context in this section using a probabilistic framework as well as an
experimental framework.

4.1 Comparison of SAR and MRF Using a Probabilistic Framework

We use a simple probabilistic framework to compare SAR and MRF in this section. We will assume
that classes I; € (c1,c¢g,...,car) are discrete and that the class label estimate fo(s;) for location
s; is a random variable. We also assume that feature values (X) are constant since there is no
specified generative model. Model parameters for SAR are assumed to be constant, (i.e., 8 is a
constant vector and p is a constant number). Finally, we assume that the spatial framework is a
regular grid.

We first note that the basic SAR model can be rewritten as follows:
y=XB+pWy+e

(I-—pW)y=XB+e

y=I—pW) ' XB+ I —pW) 'e=(QX)B+ Qe (5)

where Q = (I — pW)~! and 3, p are constants (because we are modeling a particular problem).
The effect of transforming feature vector X to QX can be viewed as a spatial smoothing operation.
The SAR model is similar to the linear logistic model in terms of the transformed feature space.
In other words, the SAR model assumes the linear separability of classes in transformed feature
space.

Figure 6 shows two datasets with a salt and pepper spatial distribution of the feature values.
There are two classes, ¢; and ¢, defined on this feature. Feature values close to 2 map to class
¢ and feature values close to 1 or 3 will map to c¢;. These classes are not linearly separable
in the original feature space. Local spatial smoothing can eliminate the salt and pepper spatial
pattern in the feature values to transform the distribution of the feature values. In the top part
of Figure 6, there are few values of 3 and smoothing revises them close to 1 since most neighbors

11
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Figure 6: Spatial datasets with salt and pepper spatial patterns

have values of 1. SAR can perform well with this dataset since classes are linearly separable in the
transformed space. However, the bottom part of Figure 6 shows a different spatial dataset where
local smoothing does not make the classes linearly separable. Linear classifiers cannot separate
these classes even in the transformed feature space assuming Q = (I — pW)~! does not make the
classes linearly separable.

Although MRF and SAR classification have different formulations, they share a common goal,
estimating the posterior probability distribution: p(l;|X). However, the posterior for the two
models is computed differently with different assumptions. For MRF the posterior is computed
using Bayes’ rule. On the other hand, in logistic regression, the posterior distribution is directly fit
to the data. For logistic regression, the probability of the set of labels L is given by:

N
Pr(LIX) = Hp(zi|X) (6)

One important difference between logistic regression and MRF is that logistic regression assumes
no dependence on neighboring classes. Given the logistic model, the probability that the binary
label takes its first value c¢; at a location s; is:

1
Prl;|X) = 7
where the dependence on the neighboring labels exerts itself through the W matrix, and subscript

i (in Q;) denotes the i*" row of the matrix (). Here we have used the fact that y can be rewritten
as in equation 5.
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To find the local relationship between the MRF formulation and the logistic regression formu-
lation (for the two class case ¢c; = 1 and ¢y = 0), at point s;

Pr(X|l; =1,L;)Pr(l; = 1, L;)
r((l =1IX, Li) Pr(X|l; =1,L;)Pr(l; = 1, L;) + Pr(X|l; = 0, L;)Pr(l; = 0, L;) (8)
1

1+ exp(—Q;Xp)

which implies

Pr(X|l =0, L) Pr(i; = 0, ;) 9)

QiXB = In(

This last equation shows that the spatial dependence is introduced by the W term through @);.
More importantly, it also shows that in fitting 8 we are trying to simultaneously fit the relative
importance of the features and the relative frequency (%) of the labels. In contrast, in
the MRF formulation, we explicitly model the relative frequencies in the class prior term. Finally,
the relationship shows that we are making distributional assumptions about the class conditional
distributions in logistic regression. Logistic regression and logistic SAR models belong to a more

general exponential family. The exponential family is given by

P?"(U|’l)) = eA(av)+B(u,7r)+6$u (10)

where u,v are location and label respectively. This exponential family includes many of the
common distributions such as Gaussian, Binomial, Bernoulli, and Poisson as special cases. The
parameters 6, and 7 control the form of the distribution. Equation 9 implies that the class condi-
tional distributions are from the exponential family. Moreover the distributions Pr(X|l; = 1, L;)
and Pr(X]|l; =0, L;) are matched in all moments higher than the mean (e.g., covariance, skew, kur-
tosis, etc.), such that in the difference in(Pr(X|l; = 1, L;)) — In(Pr(X|l; = 0, L;)), the higher order
terms cancel out, leaving the linear term (62 u) in equation 10 on the left hand-side of equation 9.

4.2 Experimental Comparison of SAR and MRF

We carried out experiments to compare the classical regression, spatial autoregressive regression
and MRF-based Bayesian classifiers. We compared two families of kernel functions, namely the
Gaussian Mixture Model (GMM) and Polynomials (P) for MRF-based Bayesian classifiers. We
refer to these two families as MRF-GMM and MRF-P respectively.

The goals of the experiments were:
1. To determine whether the real bird habitat datasets follows a Gaussian distribution?

2. To evaluate the effect of including a spatial autoregressive term pWy in the logistic regression
equation.

3. To compare models of spatial context on both real bird habitat datasets and a non-linear
simulated synthetic dataset.

The experimental setup is shown in Figure 7. The explanatory variables of bird habitat datasets
as described in Section 1.1 were used for the learning portion of the experiments. The dependent
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class variable, (i.e., nests), that was used in learning experiments, is of two types, namely real (see
Figure 1(a)) and synthetic. Synthetic bird datasets were generated using a non-linear equation
11. All variables in these datasets were defined over a spatial grid of approximately 5000 cells. The
1995 data acquired in the Stubble wetland served as the testing dataset. This data is similar to
the learning data except for the spatial locations. We also generated a synthetic dependent class
variable Stubble wetlands.

rea
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Complete
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Roc-Curves Spatial Confusion | Performance
Matrix Measures

Figure 7: Experimental Method for the Evaluation of SAR and MRF

Metrics of Comparison for Classification Accuracy: Consider boolean vectors, A,[i] = fcsi]
representing actual nest locations, and P, [i] = fo(s;) representing predicted nest locations and their
inverses, Anpli] = 1 — Ay[i] and P, [i] = 1 — P,[i]. The classification accuracy of various measures
for such a binary prediction model is summarized in a matrix as shown in Table 2, using the boolean
vectors.

‘ | Predicted Nest (Present) | Predicted No-nest (Absence) |

Actual Nest (Present) A,P, AnPrn
Actual No-nest (Absence) APy ApnPon

Table 2: Confusion Matrix

The traditional measure of classification accuracy compares the prediction at location s; with
the actual value at location s;. This classical measure is not sensitive to the distance between
predicted nest and actual nest if the distance is no-zero. We propose new map similarity measures
shown in Table 3. The new map similarity measures compare the prediction at location s; with the
actual value at s; as well as the actual values at neighbors of s;.

Where A, is an actual nest, A,, is an actual no-nest, P, is a predicted nest, P,, is a predicted
no-nest, and M = W + I is a matrix addition of a contiguity matrix W and an indentity matrix I.
The spatial accuracy measure (SAM) is defined as SAM = A, M P, + ApnM Py,
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| Predicted Nest (Present) | Predicted No-nest (Absence) |

Actual Nest (Present) A,MP, A,MP,,
Actual No-nest (Absence) ApnMP, A,nMPy,,
Table 3: Spatial Confusion Matrix
We summarize various accuracy measures in Table 4.
‘ Measure ‘ Definition ‘ Description
ROC Curve locus of the pair (TPR(b), FPR(b)) The higher the curve above
for each cut-off probability the straight line TPR = F PR,
TPR = ﬁ% the better the accuracy of the
FPR = AnnPanA:nPnn model
Total Error (TE) TE = AnPnn + AnnPn The lower the value of TE,
Classification Acc.(CA) | CA AnPnn+ AnnPn the better the model

— AnPnntAnnPntAnnPntAnPnn

Spatial Acc. Measure

SAM = A,MP, + A,,MP,,

the higher the value of SAM

SAM (Normalized) SAMN = = AfZ%ijXZ%ZZ AP, the better the accuracy of the
model
ADNP ADNP(A,P) = & Zszl d(Ag, Ax.nearest(P)) | the lower the value of

ADNP, the better the model

Table 4: Definition of Measures

ADNP Measure: An orghogonal measure of spatial accuracy is the Average Distance to Near-
est Prediction (ADNP) from the actual nest sites, which is formulated as ADNP(A,P) in Table
4. Ay represents the actual nest locations, P is the map layer of predicted nest locations, and
Ag.nearest(P) denotes the nearest predicted nest location to Ag. K is the number of actual nest
sites.

4.3 Experiments with Real Datasets

We used real datasets from Darr and Stubble wetlands for the results presented in this subsection.
The explanatory variables and class labels were described in Section 1.1.

4.3.1 Characterizing the Probability Distribution (Pr(X|c;))

We analyzed actual wetland datasets to estimate Pr(X|c;) for the feature values of Vegetation
Durability (Veg), Distance to Open Water (DOW) and Water Depth (WD), which were selected
as explanatory variables. We explored the statistical probability distribution of each feature given
a certain class category (e.g., no-nest class). Figure 8 illustrates the characteristic probability
distribution of each feature value given a nest class for the union of real datasets (learning dataset
and testing dataset together). We used the “kernel density estimation toolbox” of matlab to fit a
smooth function to obtain the observations shown in Figure 8.

The joint feature probability distribution for a “no-nest” class is displayed in three slices shown
in Figure 8(a), (b) and (c). Figure 8(a) shows the slice of the 3-D joint feature probability of
Vegetation Durability versus Distance to Open Water given a “no-nest” class when the other
feature (Water Depth) is fixed at value 38.6. Figure 8(b) displays the slice of the 3-D joint feature
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Figure 8: Joint feature probability distribution for whole datasets: (a) Pr(Vegetation Durability vs
Distance to Open Water | no-nest class), (b) Pr(Water Depth vs Vegetation Durability | no- nest
class), (c) Pr(Water Depth vs Distance to Open Water | no-nest class)

probability of Water Depth versus Vegetation Durability given a “no-nest” class when the other
feature (DOW) is fixed at value 7.97. The slice of the joint feature probability of Water Depth
versus Distance to Open Water given a “no-nest” class when the other feature (Vegetation) is fixed
at value 70.45 is shown in Figure 8(c).

It is clear that none of the probability distributions of the real datasets fits a normal distribu-
tion, which is a key assumption for regression models (both classical regression and SAR models).
However, MRF relaxes this assumption. In the following section, we report some experimental
results of a comparison of SAR and MRF on both a real bird habitat dataset and a synthetic bird
dataset.

4.3.2 Comparison of Different Models

We built a model using the 1995 Darr wetland data and then tested it on the 1995 Stubble wetland
data. In the learning data, all the attributes were used to build the model and in the testing data,
one value was hidden, in this case the location of bird nests. Using the knowledge gained from the
1995 Darr data and the value of the independent attributes in the Stubble test data, we predicted
the location of the bird nests in Stubble 1995.

Evaluation of the SAR and Classical Regression Models on Real Datasets: Figure 9(a)
illustrates the ROC curves for spatial autoregressive regression (SAR) and classical regression mod-
els built using the real 1995 Darr learning data and Figure 9(b) displays the ROC curve for the real
1995 Stubble testing data. It is clear that using spatial regression resulted in better predictions at
all cut-off probabilities relative to the classical regression model.

Evaluation of the SAR, MRF-GMM and MRF-P models We also compared several spatial
contextual models. Figure 10 illustrates learning and testing results for the comparison between
SAR, MRF-GMM, and MRF-P kernel density estimation.

The MRF-P model yields better spatial accuracy and as well as better classification accuracy
than MRF-GMM and SAR in both learning and testing experiments. In this real dataset, the
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Figure 9: (a) Comparison of the classical regression model with the spatial autoregression model

on the Darr learning data. (b) Comparison of the models on the Stubble testing data.

Learning Data Test Data
Classical Measure | Map Similarity Measure|  Classical Measure | Map Similarity Measure
Predicted | Predicted | Predicted| Predicted | Predicted | Predicted | Predicted | Predicted
Nest No-nest Nest No-nest Nest No-nest Nest No-nest
MREP Actual Nest 42 43 4278 4242 9 21 9.36 20.64
Actual No-nest | 96 5191 90.75 5196.2 71 1716 68.36 17186
Actual Nest 3 52 33.62 51.38 5 25 5.68 2432
MRF-GMM
Actual No-nest | 107 5180 97.55 5189.5 73 1714 71.96 1715.0
AR Actual Nest 27 58 16.83 68.17 4 26 493 25.07
Actual No-nest [ 103 5184 107.95 | 5179.1 76 1711 75.12 1711.8

Figure 10: Error matrix of genuine learning data

prediction accuracies of MRF-GMM and SAR. are very compatible.

We also show maps of the predicted nest locations to visualize the results. Figure 11(a) shows the
actual nest sites for the genuine learning data (i.e., 1995 Darr bird habitat dataset). Figure 11(b),
(c), and (d) shows the predicted nest locations via the MRF-P kernel density estimation, MRF
Gaussian mixture model, and the SAR model respectively. From these maps, we can see that
MRF-P yields better prediction. The testing maps are shown in Figure 11(e), (f), (g) and (h).
The ADNP values for each model prediction were also shown in correponding figure captions. As
can be seen, the SAR predictions are extremely localized, missing actual nests over a large part of
the Stubble marsh lands. The SAR predictions in Figure 11(d) seem to be concentrated on pixels
adjacent to water, (i.e., at a small distance to water). This reliance on a single feature is a problem
of linear models such as SAR. This is also reflected in the relatively large (2-3 times larger than
those for MRF models) ADNP values for the predictions from SAR model.
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Figure 11: Predicted nest locations and ADNP values for MRF-P, MRF-GMM, and SAR models

4.4 Non-linear Class Boundary Simulation by Synthetic Bird Datasets

We created a set of synthetic bird datasets based on non-linear generalization. We used the non-
linear equation

y=(I—pW) % (8% cos(X) + ¢ random(e) (11)

to generate a set of non-linear class boundaries. X represents the feature values for the independent
variables; ¢ is a constant value (we choose 12); random(e) is a random generated error term; I is
the identity matrix; p is the spatial co-efficient (we use p = 0.6 for both the learning and testing
synthetic data); and W is the contiguity neighborhood matrix. To generate synthetic non-linear
learning data, we used the 1995 Darr wetland feature values for X and the contiguity matrix W,
and we made the 8 values the same as SAR’s § value. Similarly, using 1995 Stubble wetlands
feature values for X, Stubble 95 contiguity matrix W, and the same § values, we generated a
synthetic testing dataset on Stubble 1995. For the non-linear class boundary simulation, we built
a model using the non-linear dataset generated using the Darr wetland and then tested it on the
non-linear synthetic data generated on the 1995 Stubble wetland data. In the learning stage, all
the feature values of the attributes and spatial dependency are used to build the model and in the
testing step, one value is hidden, the location of bird nests. Using the knowledge gained from the
learning model and the feature values of the explanatory attributes and spatial dependency in the
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Stubble test data, we predicted the bird nest locations in the non-linear synthetic data on Stubble
1995.

We carried out experiments on these synthetic bird nesting datasets. Figure 12 presents accuracy
results for MRF-P, MRF-GMM and SAR models on the non-linear simulated learning and testing
datasets. The confusion matrix shows both classical measure results and map similarity measure
results. From Figure 12, we can easily calculate the Total Error (TE) of the classical measure
and the spatial accuracy measure (SAM) for the learning model. The total error of MRF-P is
866 + 938 = 1804, which is significantly less than the total error of MRF-GMM(2151) and SAR
(2216). The spatial accuracy measure of MRF-P is 703.74 + 2899.74 = 3603, which is greater than
those of MRF-GMM(3245) and SAR (3162).

Learning Data Test Data
Classical Measure | Map Similarity Measure|  Classical Measure | Map Similarity Measure
Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Predicted

Nest No-nest Nest No-nest Nest No-nest Nest No-nest

Actual Nest 686 866 703.74 848.26 64 76 69.7 703

MRFP Actual No-nest | 938 2882 920.26 | 2899.74 68 1609 62.3 1617.4
Actual Nest 522 1030 534.08 | 1017.92 R 108 37.95 102.05
MRF-GMM Actual No-nest | 1121 2699 1108.92 | 2711.08 81 1596 75.05 | 1601.55
Actual Nest 480 1072 48518 | 1066.82 21 119 2274 117.26
AR Actua No-nest | 1144 2676 1142.7 26773 119 1558 11726 | 1559.74

Figure 12: Error matrix of the non-linear synthetic learning and testing data generated for Darr95

In the non-linear synthetic dataset, MRF-P achieves better spatial accuracy as well as better
classification accuracy than MRF-GMM and SAR in both the learning and testing datasets. The
prediction accuracy of MRF-GMM is better than that of SAR in both learning and testing.

We also drew maps of the predicted nest locations to visualize the results (see Figure 13).
Trends were similar to those observed in Figure 11.

5 Conclusion and Future Work

In this paper we have presented two popular classification approaches that model spatial context
in the framework of spatial data mining. We have provided theoretical results using a probabilistic
framework and as well as experimental results validating the comparison between SAR and MRF.
Our study shows that the SAR model makes more restrictive assumptions about the distribution of
features and class shapes (or decision boundaries) than MRF. We also observed an interesting rela-
tionship between classical models that do not consider spatial dependence and modern approaches
that explicitly model spatial context. The relationship between SAR and MRF is analogous to the
relationship between logistic regression and Bayesian Classifiers.

In the future we would like to compare other models that consider spatial context in the classi-
fication decision process. We would also like to extend the Graph cut solution procedure for SAR.
Finally, we observe that ‘precision’ and ‘recall’ [25] for the learning methods were low (i.e., less
than 0.5) for nest predictions, even though classification and spatial accuracies are reasonable. We
would like to explore techniques to improve ‘precision’ and/or ‘recall’.
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Figure 13: Predicted nest locations and ADNP values for MRF-P, MRF-GMM, and SAR models
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6 Appendix: Solving Markov Random Fields with Graph Parti-
tioning

Markov Random Fields (MRFs) generalize Markov Chains to multi-dimensional structures. Since
there is no natural order in a multi-dimensional space, the notion of a transition probability matrix
is absent in MRFs.

MRFs have found applications in image processing and spatial statistics, where they have been
used to estimate spatially varying quantities like intensity and texture for noisy measurements.
Typical images are characterized by piece-wise smooth quantities, i.e, they vary smoothly but
have sharp jumps(discontinuities) at the boundaries of the homogeneous areas. Because of these
discontinuities the least-square approach does not provide an adequate framework for the estimation
of these quantities. MRFs provide a mathematical framework to model our a prioir belief that
spatial quantities consist of smooth patches with occasional jumps.

We follow the approach suggested in[5], where it is shown that the maximum a posteriori
estimate of a particular configuration of an MRF can be obtained by solving a suitable min-cut
multiway graph partitioning problem. We will formally describe this approach later in the appendix
but first we illustrate the underlying concept with some examples.

Example 1: A Classification Problem With No Spatial Constraints

Even though MRFs are inherently multi-dimensional we will use a simple one-dimensional
example to illustrate the main points. Consider the graph G = (V, E) shown in Figure 14(a). The
node-set V itself consists of two disjoint sets, S and C. The members of S are {s1, s2, 53} and the
members of C are {c1, co}. Typically the X (s;)’s are the feature values at site s; and the c}s are the
labels, like nest or no-nest. There is an edge between each member of the set S and each member of
set C. Here we interpret the edge weights as probabilities. For example, p; = Pr(X(s1) =¢;) = 0.7
and po = Pr(X(s1) = c2) = 0.3; p1 +p2 = 1.

Our goal is to provide a label for each location s; in S using explanatory feature X (s;). This
is done by partitioning the graph into two disjoint sets (not S and C) by removing certain edges
such that:

1. There is a many-to-one mapping from the set S to C. Every element of S must be mapped
to one and only one element of C.

2. Multiple elements of C' cannot belong to a single partition. Thus there are no edges between
elements of C' and therefore the number of partitions is equal to the cardinality of C', and

3. The sum of the weights of the edges removed (the cut-set) is the minimum of all possible
cut-sets.

In this example the cut-set is easily determined. For example, of the two edges connecting each
element of S and an element of C, remove the edge with the smaller weight. Figure 14(b) shows
the graph with the cut-set removed. Thus we have just shown that when the weights of the edges
are interpreted as probabilities, the min-cut graph partition induces a maximum a posterior (MAP)
estimate for the pixel labels. We prefer to say that the min-cut induces a Bayesian classification on
the underlying pixel set. This is because we will use Bayes’ theorem to calculate the edge weights
of the graphs.

Example 2: Adding Spatial Constraints In the previous example we did not use any information
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Figure 14: MRF solution with graph-cut method: (a) Initially each pixel is assigned to both labels
with different edge weights. The edge weights correspond to probabilities about assigning each pixel
to a different label, (b) A min-cut graph partitioning induces a labeling of the pixel set. Labels
which correspond to the maximum probabilities are retained, (c) Spatial autocorrelation is
modeled by introducing edges between pixel nodes, (d) A min-cut graph partitioning does not
necessarily induce a labeling where the labeling with maximum probabilities are retained. If two
neighboring pixels are assigned different labels, then the edge connecting the pixels is added to the
cut-set.

about the spatial proximity of the pixels relative to each other. We do that now by introducing
additional edges in the graph structure.

Consider the graph shown in Figure 14(c) in which we have added two extra edges (s1,s2) and
(s2,$3) with a weight A. In this example we have chosen A = 0.2.

Now if we want to retain the same partitions of the graph as in Example 1, then the cut-set
has two extra edges, namely (s1,s2) and (s2,s3). Thus the sum of the weights of the edges in the
cut-set,We, is

We1 =0.3+0.440.45 + 2

But now, depending upon A, the cut-set weight may not be minimal. For example, if A = 0.2 then
the weight of the cut-set, W9, consisting of the edges {(s1,c2), (s2,c1), (s3,¢1), (s1,52)} is

Weo =0.34+0.4+0.55+ 0.2

Thus Weo < We1. What is happening is that if two neighboring pixels are assigned to different
labels, then the edge between the two neighbors is added to the cut-set. Thus there is a penalty
associated with two neighboring nodes being assigned to different labels every time. Thus we can
model spatial autocorrelation by adding edges between the pixel nodes of the graph. We can
also model spatial heterogeneity by assigning different weights, the A’s to the pixel edges.

Formal Description Using the terminology introduced in [5], we now formalize the observations
made in the above two examples. Again, consider a graph G = (V, E) with non-negative edge
weights. The set V' consists of two types of nodes, pizels and labels. We will denote the set of pixels
as S and the set of labels as C. There are two types of edges too: n-links and and [-link. An n-link
connects two pixels and an I-link connects a pixel with a label. There are no edges between labels.
The [-link (c;, s;) essentially represents the conditional probability Pr(l; = ¢;| X (s;)).
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Definition: A set K C F is a multi-way cut if the label nodes C' are completely separated in the
graph G(K) = (V,E — K). The sum of the weights of edges in the cut-set K is denoted as |K|. A
cut-set is a min cut-set if its weight is the minimum of all possible cut-sets.

Definition: A cut-set is feasible if it induces a many-to-one mapping from S to C' and no elements
of C can belong to the same set. (From now on we will only consider feasible cut sets)

Lemma 1 If a graph G (as defined above) has no n-links and the weights on the I-links are the
posteriori probabilities Pr(c;|s;) then the min-cut induces a Bayesian classification on the pixel set

S.

Proof: A cut set K induces a graph in which each pixel is assigned to one and only one label.
Thus every cut-set induces a classification f on the pixel set S. Now

KI=Y Y Pr(f(s;) =cilX(sy))

s;€5 c;€Coei# f(s5)

Thus

mfln|K| m1n Z Z Pr(f(s;) = ci| X (s5)) Z mln Z Pr(f(s;) = ci| X (s5))

$;€S ¢;eCei#f(s5) 5;€S ci€Cyei# f(s5)

We can pass the minimum through the first summation because there are no n-links and the cut-sets
are feasible. Now for a given s; € S

Yo Pr(f(s)=c)=1

c,eC

Therefore

Z mln Z Pr(f(s;) = ci| X(s5)) Z mln (1 —=Pr(f(sj) =c)

s;€S ¢ €C,ci#f(85) s;€S

The last term is minimized when we choose the maximum probabilities, Pr(f(s;) = ¢;) for each
sj € S. Therefore min|K| induces a classifier f which corresponds to the Bayesian classification of
the pixel set .S, since Bayes’ rule was used to determine the edge weights, (s;,¢;) = Pr(f(s;) = ¢)-
The classification f minimizing | K| is chosen as (f,) solution to location prediction problem.
Definition A Neighborhood System N of a multi-way graph G, as defined above, consists of all
unordered pixel pairs {s;,s;} such that there is an n-link between s; and s;. N(s;) consists of all
pixels in G which are n-linked to s;.

Definition Let f be classifier on the pixel set S of a graph G. Then the energy F associated with
f is defined as

= Z Z Pr(f(s;) = ci| X (s4)) Z Z — f(sk)))

S;i€S ¢ €Cci#f(s5) 5] €s SkEN(SJ)
where § is the impulse function such that

L 1 ifsj = sy
0(s; sk)_{() if 55 # si
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Lemma2: Let G be a graph, as defined above, where the weights of the I-links are Pr(f(s;) =
¢;| X (s;)) and the weights of the n-links are A. Then a min-cut set of G induces a classifier f on §
which minimizes the energy function FE.

Proof: By construction of the graph G. The weight of the cut-set is E. A min-cut induces an f
which minimizes F.

Minimizing F is equivalent to a MAP estimate of the MRF model [5].

How Are the Edge-weights of the Graph Generated?

We use a training set in conjunction with Bayes theorem to generate the edge weights of the t-links
of the graph. In general the labels of the pixels are not directly observable (that is what we want
to calculate), but we do have an estimate of the “independent” variables, Y. Thus given a label set
C and an observation X at s;, we can compute the required posteriori Pr(c;|X (s;)) using Bayes’
formulae.
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