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Why Data Mining?Why Data Mining?
n Holy Grail - Informed Decision Making

n Lots of Data are Being Collected
Business - Transactions, Web logs, GPS-track, …
Science - Remote sensing, Micro-array gene expression data, …

n Challenges:
Volume (data) >> number of human analysts
Some automation needed

n Data Mining may help!
Provide better and customized insights for business
Help scientists for hypothesis generation



Spatial DataSpatial Data
n Location-based Services

E.g.: MapPoint, MapQuest, Yahoo/Google Maps, …

Courtesy: Microsoft Live Search (http://maps.live.com)



Spatial DataSpatial Data
n In-car Navigation Device

Emerson In-Car Navigation System (Courtesy: Amazon.com)



Spatial Data Mining (SDM)Spatial Data Mining (SDM)
n The process of discovering

interesting, useful, non-trivial patterns
Ø patterns: non-specialist
Ø exception to patterns: specialist

from large spatial datasets

n Spatial pattern families
Spatial outlier, discontinuities
Location prediction models
Spatial clusters
Co-location patterns
…



Spatial Data Mining and ScienceSpatial Data Mining and Science
n Understanding of a physical phenomenon

Though, final model may not involve location
Ø Cause-effect e.g. Cholera caused by germs

Discovery of model may be aided by spatial patterns
Ø Many phenomenon are embedded in space and time
Ø Ex. 1854 London – Cholera deaths clustered around a water pump
Ø Spatio-temporal process of disease spread => narrow down potential causes
Ø Ex. Recent analysis of SARS

n Location helps bring rich contexts
Physical: e.g., rainfall, temperature, and wind
Demographical: e.g., age group, gender, and income type
Problem-specific, e.g. distance to highway or water



Example Pattern: Spatial ClusterExample Pattern: Spatial Cluster
n The 1854 Asiatic Cholera in London



Example Pattern: Spatial OutliersExample Pattern: Spatial Outliers
n Spatial Outliers

Traffic Data in Twin Cities
Abnormal Sensor Detections
Spatial and Temporal Outliers



Example Pattern: Predictive ModelsExample Pattern: Predictive Models
n Location Prediction: 

Predict Bird Habitat Prediction
Using environmental variables

Nest Locations



Example Patterns: CoExample Patterns: Co--locations locations 
n Given: A collection of 

different types of 
spatial events

n Find: Co-located 
subsets of event types



WhatWhat’’s NOT Spatial Data Minings NOT Spatial Data Mining
n Simple Querying of Spatial Data

Find neighbors of Canada given names and boundaries of all countries
Find shortest path from Boston to Houston in a freeway map
Search space is not large (not exponential)

n Testing a hypothesis via a primary data analysis
Ex. Female chimpanzee territories are smaller than male territories
Search space is not large!
SDM: secondary data analysis to generate multiple plausible hypotheses

n Uninteresting or obvious patterns in spatial data
Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul, 
Given that the two cities are 10 miles apart.
Common knowledge: Nearby places have similar rainfall

n Mining of non-spatial data
Diaper sales and beer sales are correlated in evening



Application DomainsApplication Domains
n Spatial data mining is used in

NASA Earth Observing System (EOS): Earth science data
National Inst. of Justice: crime mapping
Census Bureau, Dept. of Commerce: census data
Dept. of Transportation (DOT): traffic data
National Inst. of Health (NIH): cancer clusters
Commerce, e.g. Retail Analysis

n Sample Global Questions from Earth Science 
How is the global Earth system changing
What are the primary forcing of the Earth system
How does the Earth system respond to natural and human included changes
What are the consequences of changes in the Earth system for human 
civilization
How well can we predict future changes in the Earth system



Example of Application DomainsExample of Application Domains
n Sample Local Questions from Epidemiology [TerraSeer]

What’s overall pattern of colorectal cancer
Is there clustering of high colorectal cancer incidence anywhere in the study 
area
Where is colorectal cancer risk significantly elevated
Where are zones of rapid change in colorectal cancer incidence

Geographic distribution of male colorectal cancer in Long Island, New York (Courtesy: TerraSeer)



Business ApplicationsBusiness Applications
n Sample Questions:

What happens if a new store is added
How much business a new store will divert from existing stores
Other “what if” questions:
Ø changes in population, ethic-mix, and transportation network
Ø changes in retail space of a store
Ø changes in choices and communication with customers

n Retail analysis: Huff model [Huff, 1963]
A spatial interaction model
Ø Given a person p and a set  S of choices
Ø
Ø

Connection to SDM
Ø Parameter estimation, e.g., via regression

For example:
Ø Predicting consumer spatial behaviors
Ø Delineating trade areas
Ø Locating retail and service facilities
Ø Analyzing market performance
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Map ConstructionMap Construction
n Sample Questions

Which features are anomalous?
Which layers are related?
How can the gaps be filled?

n Korea Data
Latitude 37deg15min to 37deg30min
Longitude 128deg23min51sec to 128deg23min52sec

n Layers
Obstacles (Cut, embankment, depression)
Surface drainage (Canal, river/stream, island, common open water, ford, dam)
Slope
Soils (Poorly graded gravel, clayey sand, organic silt, disturbed soil)
Vegetation (Land subject to inundation, cropland, rice field, evergreen trees, 
mixed trees)
Transport (Roads, cart tracks, railways)



Colocation in Example DataColocation in Example Data
n Road: river/stream
n Crop land/rice fields: ends of roads/cart roads
n Obstacles, dams and islands: river/streams
n Embankment obstacles and river/stream: clayey soils
n Rice, cropland, evergreen trees and deciduous trees: 

river/stream
n Rice: clayey soil, wet soil and terraced fields
n Crooked roads: steep slope



Colocation ExampleColocation Example
n Interestingness

Patterns to Non-Specialist vs. Exceptions to Specialist

n Road-River/Stream Colocation

Road-River Colocation Example 
(Korea database, Courtesy: Architecture Technology Corporation)



A Complex Colocation ExampleA Complex Colocation Example
n Cropland colocated with river, stream or road

Complex Colocation Example 
(Korea dataset, Courtesy: Architecture Technology Corporation)



Outliers in Example DataOutliers in Example Data
n Outlier detection

Extra/erroneous features
Positional accuracy of features
Predict mislabeled/misclassified features

n Examples
Cropland not close to river and road 
Overlapping road and river 
Ø without bridge



Overview Overview 
n Spatial Data Mining

Find interesting, potentially useful, non-trivial patterns from spatial data

n Components of Data Mining
Input: table with many columns, domain (column)
Statistical Foundation
Output: patterns and interest measures
Ø e.g., predictive models, clusters, outliers, associations

Computational process: algorithms



OverviewOverview
Ø Input
n Statistical Foundation
n Output
n Computational Process
n Trends



Overview of InputOverview of Input
n Data

Table with many columns (attributes)

Ø e.g., tid: tuple id; fi: attributes

Spatial attribute: geographically referenced
Non-spatial attribute: traditional

n Relationships among Data
Non-spatial
Spatial

No…1214.00002

Yes…1203.50001

fn…f2f1tid

Example of Input Data



Data in Spatial Data MiningData in Spatial Data Mining
n Non-spatial Information

Same as data in traditional data mining
Numerical, categorical, ordinal, boolean, etc
e.g., city name, city population

n Spatial Information
Spatial attribute: geographically referenced
Ø Neighborhood and extent
Ø Location, e.g., longitude, latitude, 

elevation

Spatial data representations
Ø Raster: gridded space
Ø Vector: point, line, polygon
Ø Graph: node, edge, path

Raster Data for UMN Campus
Courtesy: UMN

Vector Data for UMN Campus
Courtesy: MapQuest



Relationships on Data in Spatial Data MiningRelationships on Data in Spatial Data Mining
n Relationships on non-spatial data

Explicit 
Arithmetic, ranking (ordering), etc.
Object is instance of a class, class is a subclass of another class, object is part of 
another object, object is a membership of a set

n Relationships on Spatial Data
Many are implicit
Relationship Categories
Ø Set-oriented: union, intersection, and membership, etc
Ø Topological: meet, within, overlap, etc
Ø Directional: North, NE, left, above, behind, etc
Ø Metric: e.g., Euclidean: distance, area, perimeter
Ø Dynamic: update, create, destroy, etc
Ø Shape-based and visibility

n Granularity

Distance to nearest roadHighest elevation in a zoneZonal

Adjacent_to_road?SlopeFocal

On_road?ElevationLocal 

Road ExampleElevation ExampleGranularity



OGC ModelOGC Model
n Open GIS Consortium Model

Support spatial data types: e.g. point, line, polygons
Support spatial operations as follows:

Distance, Buffer, ConvexHull, 
Intersection, Union, Difference, 
SymmDiff

Spatial Analysis

Equal, Disjoint, Intersect, Touch,
Cross, Within, Contains, Overlap

Topological/Set Operations

SpatialReference, Envelope, 
Boundary, Export, 
IsEmpty, IsSimple

Basic Function

Operator NameOperator Type

Examples of Operations in OGC Model



OGIS OGIS –– Topological OperationsTopological Operations
n Topology

9-intersections using 
Ø Interior
Ø boundary 
Ø exterior

overlap

9-intersection
model

equalmeetdisjoint

Topological
Relationship
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Mining Implicit Spatial RelationshipsMining Implicit Spatial Relationships
n Choices

Materialize spatial info + classical data mining
Customized spatial data mining techniques

n Example -
Distance: 
Ø Point: Euclidean, Extended objects: buffer-based, Graph: shortest path

Transactions: i.e., space partitions
Ø Circles centered at reference features, Gridded cells, Voronoi diagram

DBSCANNorth, Left, AboveDirectional

Clustering on sphereShape, VisibilityOthers

K-meansDistance, densityEuclidean

NEM, co-locationClassical Data 
Mining can be 

used

Neighbor, Inside, OutsideTopological

Customized SDM Tech.MaterializationRelationships



Research Needs for DataResearch Needs for Data
n Limitations of OGC Model

Aggregate functions - e.g. Mapcube
Direction predicates - e.g. absolute, ego-centric
3D and visibility, Network analysis, Raster operations
Spatio-temporal

n Needs for New Research
Modeling semantically rich spatial properties
Moving objects
Spatio-temporal data models



SpatioSpatio--Temporal IssuesTemporal Issues
Ø Spatio-Temporal Data

Examples

§ Spatio-Temporal Data Models
Emerging ideas



SpatioSpatio--Temporal DataTemporal Data
n Spatial Time Series Data

Space is fixed
Measurement value changes
over a series of time
E.g. Global Climate Patterns,
Army vehicle movement

Average Monthly Temperature

§Manpack stinger
(1 Objects)

§M2_IFV
(3 Objects)

§ Field_Marker
(6 Objects)

§ T80_tank 
(2 Objects)

§ BRDM_AT5 (enemy) 
(1 Object)

Army vehicle movement



SpatioSpatio--Temporal DataTemporal Data
n Moving objects Data

Area of interest changes 
with the moving object
E.g. GPS track of a vehicle,
Personal Gazetteers

GPS Tracks of a User

Personal Gazetteer

(a personal gazetteer records places 
meaningful for a specific person)



SpatioSpatio--Temporal Data: ModelingTemporal Data: Modeling

Open
Time series of 

9-Intersection Matrix

d/dt(9-Intersection 
Matrix)

9-Intersection 
Matrix, OGIS

Topology

Time series of points, 
lines, polygons (tracks)
Visualized as helixes 

(linear/angular motion)

Speed, Velocity, 
d/dt(area)

Location
OGIS – direction, 

distance, area, 
perimeter

Vector 
Space

Open
e.g. Helix

Track = (ti, xi, yi) –
moving object databases

Motion – Translation, 
Rotation, Deformation

d/dt(position, 
orientation, shape)

Spatial 
properties 
of objects

Spatio-Temporal

Time-series of velocitiesd/dt(mass)Aspatial
properties 
of objects

AggregationDifferentiation

Spatial



SpatioSpatio--Temporal Data: ModelingTemporal Data: Modeling
n Topology

Differentiation

Aggregation
321Time

overlap

9-intersection 
model

meetdisjoint

Relation
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SpatioSpatio--Temporal Data: ModelingTemporal Data: Modeling
n Open Problems 

Aggregation Modeling – Helix

n Helix
Representation of trajectory and boundary changes in an object over 
time

Helix representation of an object’s trajectory
and change in shape over time

Spine – represents 
trajectory of the object

Prongs – represents
deformation of the object

Courtesy: University of Maine



OverviewOverview
ü Input
Ø Statistical Foundation
n Output
n Computational Process
n Trends



Statistics in Spatial Data MiningStatistics in Spatial Data Mining
n Classical Data Mining

Learning samples are independently distributed
Cross-correlation measures, e.g., Chi-square, Pearson

n Spatial Data Mining
Learning sample are not independent
Spatial Autocorrelation
Ø Measures:
Ø distance-based (e.g., K-function)
Ø neighbor-based (e.g., Moran’s I)

n Spatial Cross-Correlation
Measures: distance-based, e.g., cross K-function

n Spatial Heterogeneity



Overview of Statistical FoundationOverview of Statistical Foundation
n Spatial Statistics [Cressie, 1991][Hanning, 2003]

Geostatistics
Ø Continuous
Ø Variogram: measure how similarity decreases with distance
Ø Spatial prediction: spatial autocorrelation
Lattice-based statistics
Ø Discrete location, neighbor relationship graph
Ø Spatial Gaussian models
Ø Conditionally specified, Simultaneously specified spatial Gaussian 

model
Ø Markov Random Fields, Spatial Autoregressive Model
Point process
Ø Discrete
Ø Complete spatial randomness (CSR): Poisson process in space
Ø K-function: test of CSR



Spatial Autocorrelation (SA)Spatial Autocorrelation (SA)
n First Law of Geography

“All things are related, but nearby things are more related than distant things. 
[Tobler, 1970]”

n Spatial autocorrelation
Nearby things are more similar than distant things
Traditional i.i.d. assumption is not valid
Measures: K-function, Moran’s I, Variogram, …

Pixel property with independent identical 
distribution

Vegetation Durability with SA



Spatial Autocorrelation: DistanceSpatial Autocorrelation: Distance--based measurebased measure
n K-function Definition

Test against randomness for point pattern

Ø ? is intensity of event
For Poisson complete spatial randomness (CSR): K(h) = ph2

Ø >: cluster
Ø <: decluster/regularity

EhK 1)( −= λ [number of events within distance h of an arbitrary event]

K-Function based 
Spatial Autocorrelation



Spatial Autocorrelation: Topological MeasureSpatial Autocorrelation: Topological Measure

n Moran’s I Measure Definition
W: the contiguity matrix

n Ranges between -1 and +1
higher positive value 
Ø => high SA, Cluster, Attract

lower negative value 
Ø => interspersed, de-clustered, repel

Example
Ø spatial randomness => MI = 0
Ø checker board => MI = -1
Ø distribution of vegetation durability => MI = 0.7

t

t

zz
zWz

MI =

},...,{ 1 xxxxz n −−=

n
x

x i : data values
: mean of x
: number of data



CrossCross--CorrelationCorrelation
n Cross K-Function Definition

Cross K-function of some pair of spatial feature types
Example
Ø Which pairs are frequently co-located
Ø Statistical significance

EhK jji
1)( −= λ [number of type j event within distance h

of a randomly chosen type i event]



CrossCross--CorrelationCorrelation
Find Patterns in the following data:

Answers:                           and      



Illustration of CrossIllustration of Cross--CorrelationCorrelation
n Illustration of Cross K-function for Example Data

Cross-K Function for Example Data



Illustration of CrossIllustration of Cross--CorrelationCorrelation
n Illustration of Cross K-function for Example Data

Cross-K Function for Example Data



Spatial SlicingSpatial Slicing
n Spatial heterogeneity

“Second law of geography” [M. Goodchild, UCGIS 2003]
Global model might be inconsistent with regional models
Ø spatial Simpson’s Paradox

n Spatial Slicing
May improve the effectiveness of SDM, show support regions of a pattern



Edge EffectEdge Effect
n Cropland on edges may not be classified as outliers
n No concept of spatial edges in classical data mining

Korea Dataset, Courtesy: Architecture Technology Corporation 



Research Challenges of Spatial StatisticsResearch Challenges of Spatial Statistics
n State-of-the-art of Spatial Statistics

n Research Needs
Correlating extended features, road, rivers, cropland
Edge effect
Relationship to classical statistics
Ø Ex. SVM with spatial basis function vs. SAR

Spatio-temporal statistics

vvPolygon

graph

Vector

raster

vLine

vvvPoint

vv

GeostatisticsLatticePoint 
Process

Data Types and Statistical Models



SpatioSpatio--Temporal Statistics Temporal Statistics 
n Emerging topic

“First” statistics book on 
Spatio-temporal models,
1st edition, 2007

Chapter on Bayesian-based
Spatio-Temporal modeling,
2004

32nd Spring Lecture Series,
2007

Principal Lecturer: Noel Cressie



OverviewOverview
ü Input
ü Statistical Foundation
Ø Output
n Computational Process
n Trends



Three General Approaches in SDMThree General Approaches in SDM
n A. Materializing spatial features, use classical DM

Ex. Huff's model – distance (customer, store)
Ex. spatial association rule mining [Koperski , Han, 1995]
Ex: wavelet and Fourier transformations
commercial tools: e.g., SAS-ESRI bridge

n B. Spatial slicing, use classical DM
Ex. association rule with support map 
[P. Tan et al]
commercial tools: e.g., Matlab, SAS, R, Splus

n C. Customized spatial techniques
Ex. geographically weighted regression: 
parameter = f(loc)
e.g., MRF-based Bayesian Classifier (MRF-BC)
commercial tools
Ø e.g., Splus spatial/R spatial/terraseer + 

customized codes

Association rule with support map
(FPAR-high -> NPP-high)



Overview of Data Mining OutputOverview of Data Mining Output
n Supervised Learning: Prediction

Classification
Trend

n Unsupervised Learning:
Clustering
Outlier Detection
Association

n Output Patterns vs. Statistical Models

Associations

Outliers

Clustering

Trend

Prediction

Patterns

vvv

vv

vv

v

vv

GeostatisticsLatticePoint 
Process

Output Patterns vs. Statistical Models



Illustrative Application to Location PredictionIllustrative Application to Location Prediction

Nest Locations Vegetation

Water Depth Distance to Open Water



Prediction and TrendPrediction and Trend
n Prediction

Continuous: trend, e.g., regression
Ø Location aware: spatial autoregressive model (SAR)

Discrete: classification, e.g., Bayesian classifier
Ø Location aware: Markov random fields (MRF)

SpatialClassical

εβ+=Xy

)Pr(
)Pr()|Pr(

)|Pr(
X

CCX
XC ii

i =

εβρ ++= XyWy

),Pr(
)|,Pr()Pr(

),|Pr(
N

iNi
Ni CX

cCXC
CXc =



Prediction and TrendPrediction and Trend
n Linear Regression
n Spatial Regression
n Spatial model is better

εβ += Xy

εβρ ++= XWyy

ROC Curve for learning ROC Curve for testing



Spatial Contextual Model: SARSpatial Contextual Model: SAR
n Spatial Autoregressive Model (SAR)

Assume that dependent values yi are related to each other
Ø yi = f(yi) i ? j
Directly model spatial autocorrelation using W

n Geographically Weighted Regression (GWR)
A method of analyzing spatially varying relationships 
Ø parameter estimates vary locally
Models with Gaussian, logistic or Poisson forms can be fitted
Example:
where                   are location dependent

εβρ ++= Xyy W

'' εβ += Xy
'' and εβ



Spatial Contextual Model: MRFSpatial Contextual Model: MRF
n Markov Random Fields Gaussian Mixture Model (MRF-

GMM)
Undirected graph to represent the interdependency relationship of 
random variables
A variable depends only on neighbors
Independent of all other variables
fC(Si) independent of fC(Si), if W (si, sj) = 0
Predict fC(Si) , given feature value X and neighborhood class label CN

Ø Assume: Pr(ci); Pr(X, CN|ci); and Pr(X, CN) are mixture of Gaussian 
distributions.

),Pr(
)|,Pr(*)Pr(

),|Pr(
N

iNi
Ni CX

cCXc
CXc =



Research Needs for Spatial ClassificationResearch Needs for Spatial Classification
n Open Problems

Estimate W for SAR and MRF-BC
Scaling issue in SAR
Ø Scale difference: 

Spatial interest measure: e.g., avg, dist(actual, predicted)
βρ Xvs.Wy

Actual Sites Pixels with
actual sites

Prediction 1 Prediction 2.
Spatially more accurate

than Prediction 1



ClusteringClustering
n Clustering: Find groups of tuples
n Statistical Significance

Complete spatial randomness, cluster, and decluster

Inputs: 
Complete Spatial Random (CSR),
Cluster,
Decluster

Classical Clustering

Spatial Clustering



ClusteringClustering
n Similarity Measures

Non-spatial: e.g., soundex
Classical clustering: Euclidean, metric, graph-based
Topological: neighborhood EM (NEM)
Ø Seeks a partition that is both well clustered in feature space and spatially 

regular
Ø Implicitly based on locations

n Interest measure:
spatial continuity
cartographic generalization
unusual density
keep nearest neighbors in common cluster

n Challenges
Spatial constraints in algorithmic design
Ex. Rivers, mountain ranges, etc



SemiSemi--Supervised Bayesian ClassificationSupervised Bayesian Classification
n Motivation: high cost of collecting labeled samples
n Semi-supervised MRF

Idea: use unlabeled samples to improve classification
Ø Ex. reduce salt-N-pepper noise
Effects on land-use data - smoothing

Bayesian Classifiers



Outlier DetectionOutlier Detection
n Spatial Outlier Detection

Finding anomalous tuples
Global and spatial outlier
Detection Approaches
Ø Graph-based outlier detection: variogram, Moran scatter plot
Ø Quantitative outlier detection: scatter plot, and z-score



Outlier DetectionOutlier Detection
n Graphical Tests

Moran Scatter Plot
Variogram Cloud



Outlier Detection Outlier Detection –– Quantitative TestsQuantitative Tests
n Quantitative Tests:

Scatter Plot
Spatial Z-test
Algorithmic Structure
Ø Spatial Join on neighbor 

relation



Research Needs in Spatial Outlier Research Needs in Spatial Outlier 
DetectionDetection

n Multiple spatial outlier detection
Eliminating the influence of neighboring outliers
Incremental

n Multi-attribute spatial outlier detection
Use multiple attributes as features

n Design of spatial statistical tests
n Scale up for large data



Association Rules Association Rules –– An AnalogyAn Analogy
n Association rule e.g. (Diaper in T => Beer in T)

Support: probability (Diaper and Beer in T) = 2/5
Confidence: probability (Beer in T | Diaper in T) = 2/2

n Algorithm Apriori [Agarwal, Srikant, VLDB94]
Support based pruning using monotonicity

n Note: Transaction is a core concept!

n
…

3

2

1
Transaction

{battery, juice, beef, egg, chicken, …}
…

{      ,     , pacifier, formula, blanket, …}

{pillow,     , toothbrush, ice-cream, muffin, …}

{socks,      , milk,     , beef, egg, …}
Items Bought



Spatial ColocationSpatial Colocation

Participation index
Participation ratio pr(fi, c) of feature fi in colocation c = {f1, f2, …, fk}: fraction of instances 

of fi with feature {f1, …, fi-1,  fi+1, …, fk} nearby. Participation index = min{pr(fi, c)} 

Algorithm
Hybrid Colocation Miner

Pr.[ A in N(L) | B at L ]Pr.[ A in T | B in T ]conditional probability 
measure

neighborhoodstransactionscollections

events /Boolean spatial featuresitem-typesitem-types

support

discrete sets

Association rules Colocation rules

participation indexprevalence measure

continuous spaceunderlying space

n Comparison with Association rules



Spatial Colocation: ApproachesSpatial Colocation: Approaches

Spatial feature A,B, C,
and their instances

Input Dataset

Support A,B=1 B,C=2

§ Reference feature 
approach

C as reference feature
Transactions: (B1) (B2)
Support (A,B) = ?

Support A,B =2  B,C=2

§ Partition approach

Support(B,C)=min(2/2,2/2)=1

Support(A,B)=min(2/2,3/3)=1

§ Colocation 

Neighbor relationship



Spatial Colocation ApproachesSpatial Colocation Approaches
n Approaches

Spatial Join-based approaches
Ø Join based on map overlay e.g. [Estivill-Castro and Lee, 1001]
Ø Join using K-function e.g. [Shekhar and Huang, 2001]
Transaction-based approaches
Ø E.g. [Koperski and Han, 1995] and [Morimoto, 2001]

n Challenges
Neighborhood definition
“Right” trasactionazation
Statistical interpretation
Computational complexity
Ø Large number of joins
Ø Join predicate is a conjunction of
Ø Neighbor
Ø Distinct item types



SpatioSpatio--Temporal PatternsTemporal Patterns
n Outlier Detection

Emerging Hot-spots 
ST Discontinuity

n Prediction
Location Prediction for moving objects
Temporal generalization 

n Clusters
Cluster of moving objects, e.g. Flock 
Grid-based: Moving Clusters

n Associations, Co-locations
Grid-based: ST Association Rules
Join-based: Mixed-Drove



SummarySummary
What’s Special About Spatio-Temporal Data Mining ?

Spatio-Temporal outlierSpatial outlierOutlier

Spatio-Temporal association
Mixed-Drove pattern
Sustained Emerging pattern

ColocationAssociation

Future Location predictionLocation predictionPrediction

Output

Clusters Hot-spots

Spatial autocorrelation

Often implicit 
relationships, complex 
types

Spatial DM

Flock pattern
Moving Clusters

Spatial autocorrelation and
Temporal correlation

Another dimension – Time.
Implicit relationships 
changing over time

Spatio-Temporal DM

Statistical Foundation

Input Data



ST Patterns: Sustained Emerging HotspotsST Patterns: Sustained Emerging Hotspots

n Sustained Emerging
Public health (Infectious 
emerging diseases - dengue 
fever)

homeland defense (looking 
for growing “events”, bio-
defense) 

Influenza
H5N1

HIV/AIDS

Drug-resistant MalariaMultidrug-resistant tuberculosis 

Colera

SARS

Dengue

West 
Nile

Hepatitis C

(Singapore)

Courtesy: Wikipedia

• Newly emerging diseases            o  Re-emerging diseases

Instances of sustained
emerging patterns 



ST Patterns: OutliersST Patterns: Outliers
n Spatio-Temporal Outliers

Example Application: Sensor Networks - Traffic Data in Twin Cities
Abnormal Sensor Detections
Example: Sensor 9 (spatial) at time 0-60 (temporal)



ST Patterns: PredictionST Patterns: Prediction
n Predict driver’s destinations 

From driver’s gps track, destination history and behavior

Destination cells for a driver
Probabilistic destinations, darker outlines are

cells with higher probability

Courtesy: John Krumm, Eric Horovitz,Microsoft Research



ST Patterns: Mixed DroveST Patterns: Mixed Drove
n Flock Pattern Mining

n Flock Pattern [Gudmundsson05]
Each time step treated separately

A B
A C
B C
A B C

1-10
3-9
3-9
3-9

PatternsTime

• Significant Flock Pattern

1
0.7
0.7
0.7
below threshold

(A B)
(A C)
(B C)
(A B C)
others

Interest Measure
(threshold 0.5)

Patterns

A D
B D
C D
A B C B

7
7
7
7

PatternsTime



ST Patterns: Moving ClustersST Patterns: Moving Clusters

n Moving Clusters
North Atlantic Oscillation

Source:  Portis et al, Seasonality of the NAO, AGU Chapman 
Conference, 2000.



ST Patterns: AssociationST Patterns: Association
n Spatio-temporal Associations in Climate Data

ST Grid (latitude degree, longitude degree, month) defines transactions

FPAR-Hi ==> NPP-Hi (sup=5.9%, 
conf=55.7%)

Grassland/Shrubland areas

Association rule is interesting because it appears mainly in regions with 
grassland/shrubland vegetation type

Courtesy: Tan et al 2001



ST Patterns: Mixed DroveST Patterns: Mixed Drove
n Ecology

Animal movements 
(migration, predator-prey, 
encounter)
Species relocation and 
extinction (wolf – deer)

n Games
Game tactics of opponent team 
(soccer, American football, …)
Co-occurring role patterns



ST Patterns: Sustained EmergingST Patterns: Sustained Emerging

n Sustained Emerging

time slot t=0 time slot t=2time slot t=1

Which pairs are sustained emerging patterns?



OverviewOverview
ü Input
ü Statistical Foundation
ü Output
Ø Computational Process
n Trends



Computational ProcessComputational Process
n Most algorithmic strategies are applicable
n Algorithmic Strategies in Spatial Data Mining:

Parameter estimation with spatial 
autocorrelation

Parameter Estimation

Spatial Index, Tree MatchingHierarchical Structures

Plane Sweeping, Space Filling CurveOrdering

Minimum-Bounding Rectangle 
(MBR), Predicate Approximation

Filter-and-Refine

Possible loss 
of information

Space partitioningDivide-and-Conquer

CommentsAlgorithmic Strategies in SDM Classical Algorithms

Algorithmic Strategies in Spatial Data Mining



Computational ProcessComputational Process
n Challenges

Does spatial domain provide computational efficiency
Ø Low dimensionality: 2-3
Ø Spatial autocorrelation
Ø Spatial indexing methods

Generalize to solve spatial problems
Ø Linear regression vs. SAR
Ø Continuity matrix W is assumed known for SAR, however, 

estimation of anisotropic W is non-trivial
Ø Spatial outlier detection: spatial join
Ø Co-location: bunch of joins



Example of Computational ProcessExample of Computational Process
n Teleconnection

Find (land location, ocean location) pairs with correlated climate changes
Ø Ex. El Nino affects climate at many land locations

Global Influence of El Nino during 
the Northern Hemisphere Winter
(D: Dry, W: Warm, R: Rainfall)

Average Monthly Temperature

(Courtsey: NASA, Prof. V. Kumar)



Example: Teleconnection (ContExample: Teleconnection (Cont’’))
n Challenge

high dimensional (e.g., 600) feature space
67k land locations and 100k ocean locations (degree by degree grid)
50-year monthly data

n Computational Efficiency
Spatial autocorrelation
Ø Reduce Computational Complexity

Spatial indexing to organize locations
Ø Top-down tree traversal is a strong filter
Ø Spatial join query: filter-and-refine
Ø save 40% to 98% computational cost at ? = 0.3 to 0.9



Parameter estimation of SARParameter estimation of SAR
n Spatial Auto-Regression Model

Estimate ? and ß for 
The estimation uses maximum-likelihood (ML) theory

n Log-likelihood function LLF = log-det + SSE + const
log-det = ln|I- ?W|
SSE =

εβρ ++= XyWy

})W()W({
2

1
2 yIMIy TTT ρρ

σ
−−



Parameter estimation of SARParameter estimation of SAR
n Computational Insight:

LLF is uni-model [Kazar et al., 2005]: breakthrough result
Optimal ? found by Golden Section Search or Binary Search



Reducing Computational CostReducing Computational Cost
n Exact Solution

Bottleneck = evaluation of log-det
Reduce cost by getting a seed for ? minimizing SSE term [Kazar et.al., 
2005]

n Approximate Solution
Reduce cost by approximating log-determinant term
E.g., Chebyshev Polynomials, Taylor Series [LeSage and Pace, 2001]
Comparison of Accuracy, e.g., Chebyshev Polynomials >> Taylor 
Series [Kazar et.al., 2004]



Reducing Computational CostReducing Computational Cost
n Parallel Solution

n Computational Challenges
Eigenvalue + Least square + ML
Computing all eigenvalues of a large matrix
Memory requirement



Life Cycle of Data MiningLife Cycle of Data Mining
n CRISP-DM (CRoss-Industry Standard Process for DM)

Application/Business Understanding
Data Understanding
Data Preparation
Modeling
Evaluation
Deployment

Is CRISP-DM adequate for 
Spatial Data Mining?

[1] CRISP-DM URL:
http://www.crisp-dm.org

Phases of CRISP-DM



SummarySummary
n What’s Special About Spatial Data Mining

Keep NN together, Honor geo-boundariesDiscrete space, Support 
threshold, Confidence 
threshold

Constraints

Edge effect, scaleOther Issues

Computational efficiency opportunity,
Spatial autocorrelation, plane-sweeping, New 
complexity: SAR, co-location mining, 
Estimation of anisotropic W is nontrivial

Combinatorial 
optimization,
Numerical Algorithms

Computational 
Process

Map_Similarity (Actual, Predicted)Max Likelihood, Min sum 
of squared errors

Objective 
Function

Location-awarenessInterest Measures: set-
based

Output

Spatial autocorrelationIndependence of samplesStatistical 
Foundation

Often implicit relationships, complex typesAll explicit, simple typesInput Data

Spatial DMClassical DM



BookBook
http://www.spatial.cs.umn.edu
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