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Collaboration Profile:
• Role : Build novel data analysis tools 
• To facilitate science engineering or medicineTo facilitate science, engineering or medicine
• Near future opportunities

• NSF Cyber-driven Discovery and Innovation, NSF/CISE/IIS,  …
• Research Focus: Spatial Database, Spatial Data MiningResearch Focus: Spatial Database, Spatial Data Mining



Spatial Databases: Example Projects

Evacutation Route Planning

Parallelize 
Range Queries

only in old plan
Only in new plan 
In both plans

Storing graphs in disk blocksShortest Paths 



Secret Sauce: Representation of (Spatio-)temporal Networks
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(2) Time Expanded Graph (TEG) [Ford 65]
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Attributes aggregated over edges and nodes.

(3) Time Aggregated Graph (TAG) [Our Approach]
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Power of Representation: Ex. Routing Algorithms 

Predictable

Stationary Dijkstra’s, A*….

SP-TAG, SP-TAG*,CapeCodPredictable 
Future

Non-stationary

Special case (FIFO)
[Kanoulas07]

Unpredictable 
Future

General Case TEG: LP, Label-correcting

TAG: Transform to Stationary TAG

[Orda91, Kohler02, Pallotino98]
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travel times → arrival times at end node → Min. arrival time series
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Spatial and Spatio-temporal Data Mining

• What is it?
– Identifying interesting, useful, non-trivial patterns

• Hot-spots, discontinuities, co-locations, trends, …
– in large spatial or spatio-temporal datasets

• Satellite imagery, geo-referenced data, e.g. census
• gps-tracks, geo-sensor network, …

• Why is it important ?
– Potential of discoveries and insights to improve human lives

E i H i E h h i ? C f h ?• Environment: How is Earth system changing? Consequences for humans?
• Public safety: Where are hotspots of crime? Why?
• Public health: Where are cancer clusters? Environmental reasons?
• Transportation, National Security, …

– However, (d/dt) (Spatial Data Volume)  >> (d/dt) (Number of Human 
Analysts)

• Need automated methods to mine patterns from spatial data
• Need tools to amplify human capabilities to analyze spatial data• Need tools to amplify human capabilities to analyze spatial data



Spatial Data Mining: Example Projects

Nest locations Distance to open water
Location prediction: nesting sites Spatial outliers:  sensor (#9) on I-35

Vegetation durability Water depth

Co location Patterns Tele connectionsCo-location Patterns Tele connections

(Ack: In collaboration w/V. Kumar, M. Steinbach, P. Zhang)



HotSpots

What is it?
Unusally high spatial concentration of a phenomena

Cancer clusters, crime hotspots, p

Traditional Approach:
Spatial statistics based ellipsoidsp p

Our Recent Focus:
Computational Structure p

Spatial Join-index reduces computational costs
Transportation network based hotspots

Next: Spatio-temporal
Ex. Emerging hot-spots



Colocation, Co-occurrence, Interaction

What is it?
Subset of event types, whose instances occur together
Ex. Symbiosis, (bar, misdemeanors), …. Sy b os s, (ba , sde ea o s), …

Traditional Approach:
Neighbor-unaware Transaction based approachesg pp

Our Approach:
Aggregate Functions on Neighbor relationshipsgg g g p
Balance statistical rigor and computational cost

Next: Spatio-temporal interactionsp p
Item-types that sell well before or after a hurricane
Object-types that move together 
Tele-connections



Spatial/Spatio-temporal Outliers, Anamolies

What is it?
Location different from their neighbors

Discontinuities, flow anomaliesDiscontinuities, flow anomalies
Related Work 

Transient spatial outliers
Anomalous trajectoriesj
Computational Structure: Spatial Join

Very scalable using spatial DBMS
Next

(Dominant) Persistent anomalies
Multiple object types, Scale



Space/Time Prediction

What is it?
Models to predict location, time, path, …

Nest sites, minerals, earthquakes,  tornadoes, …
Related Work

Interpolation, e.g. Krigging
Heterogeneity, e.g. geo. weighted regression
Auto correlation e g spatial auto regression βW ++Auto-correlation, e.g. spatial auto-regression

Challenge: Independence assumption 
Models, e.g. Decision trees, linear regression, …
Measures, e.g. total square error, precision, recall

εxβWyy ++= ρ

, g q , p ,
Next

Spatio-temporal vector fields (e.g. flows, motion), physics
Scalable algorithms for parameter estimation

SSEnnL −−−−=
)ln()2ln(ln)ln(

2σπ
ρWIDistance based errors SSEL =
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