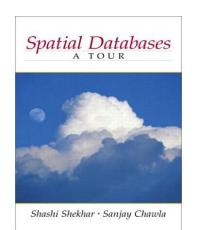
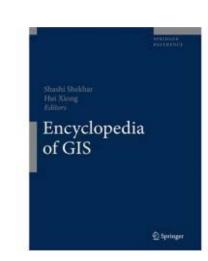
Shashi Shekhar

McKnight Distinguished University Professor Faculty of Computer Sc. and Eng., Univ. of Minnesota www.cs.umn.edu/~shekhar

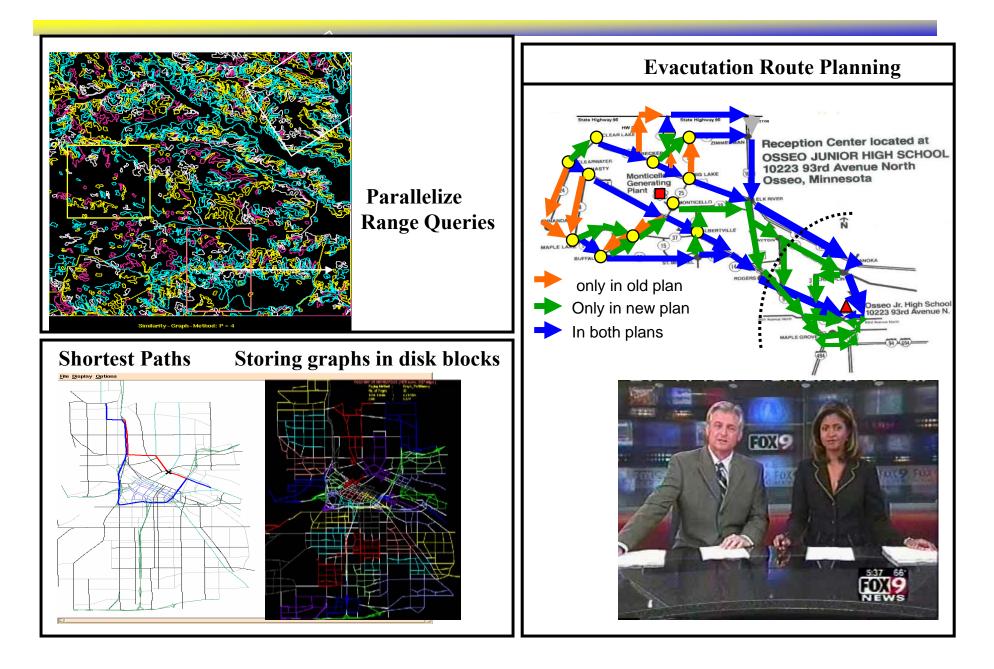
Outline:

- Spatial/Spatio-temporal Database
- Spatial/Spatio-temporal Data Mining





Spatial / Spatio-temporal Databases: Example Projects

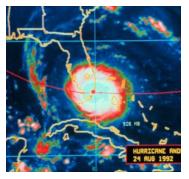


Evacuation Route Planning - Motivation

- No coordination among local plans means
 - Traffic congestions on all highways
 - e.g. 60 mile congestion in Texas (2005)
- Great confusions and chaos

"We packed up Morgan City residents to evacuate in the a.m. on the day that Andrew hit coastal Louisiana, but in early afternoon the majority came back home. **The traffic was so bad that they couldn't get through Lafayette**." Mayor Tim Mott, Morgan City, Louisiana (http://i49south.com/hurricane.htm)

(Andrew, 1992)

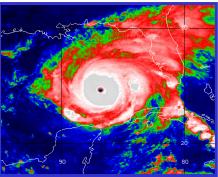


(National Weather Services)

(www.washingtonpost.com)

Houston

(Rita, 2005)

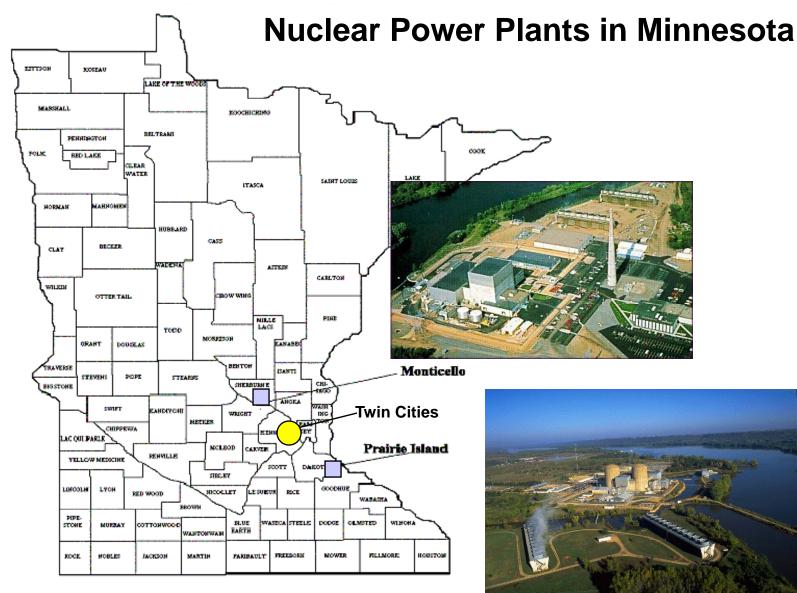


(National Weather Services)

I-45 out of Houston (FEMA.gov)

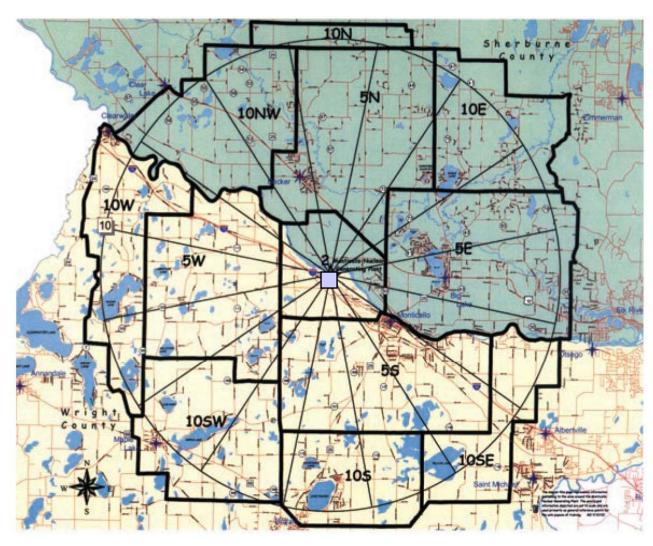
Evacuation Route Planning: A Scenario

Minnesota Nuclear Dower Plante



Monticello Emergency Planning Zone

Emergency Planning Zone (EPZ) is a 10-mile radius around the plant divided into sub areas.



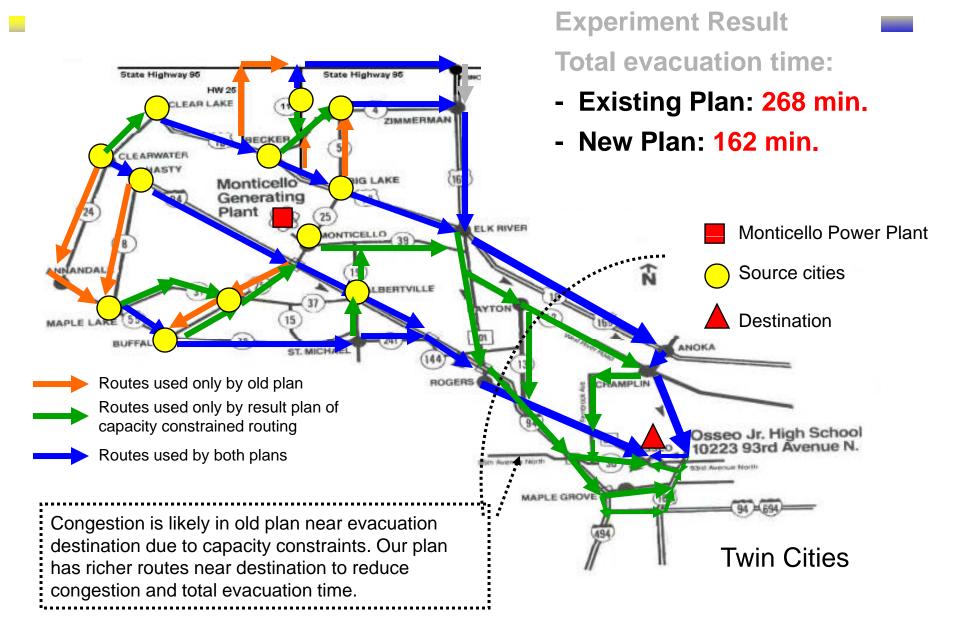
Monticello EPZ Subarea Population

2	4,675	
5N	3,994	
5E	9,645	
5S	6,749	
5W	2,236	
10N	391	
10E	1,785	
10SE	1,390	
10S	4,616	
10SW	3,408	
10W	2,354	
10NW	707	
Total	41,950	

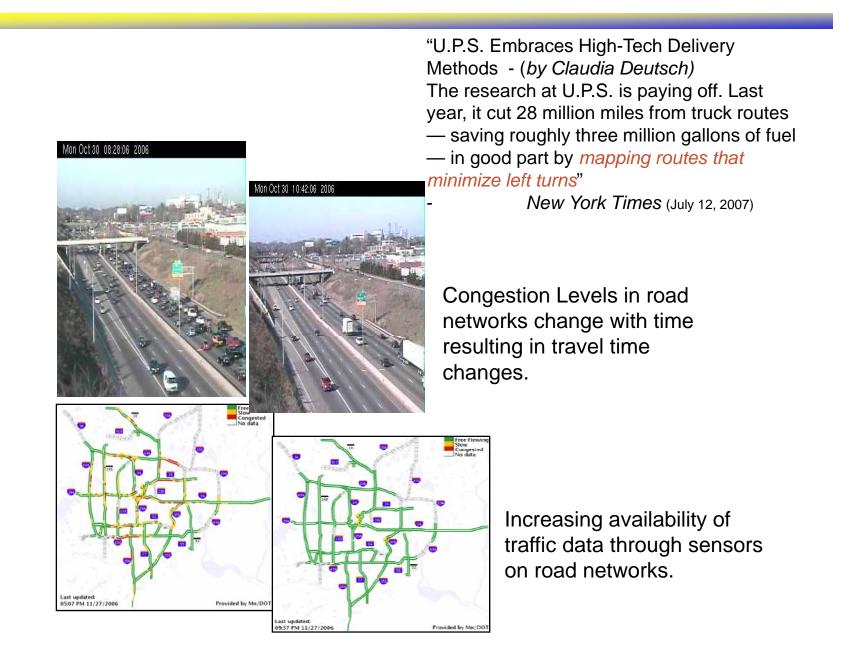
Estimate EPZ evacuation time: Summer/Winter (good weather): 3 hours, 30 minutes Winter (adverse weather): 5 hours, 40 minutes

Data source: Minnesota DPS & DHS Web site: http://www.dps.state.mn.us http://www.dhs.state.mn.us

A Real World Testcase



Computer Sc. Challenge: Time-varying Networks



Example queries on a time-varying network

1) Transportation network Routing

 \Box Varying Congestion Levels and turn restrictions \Rightarrow travel time changes.

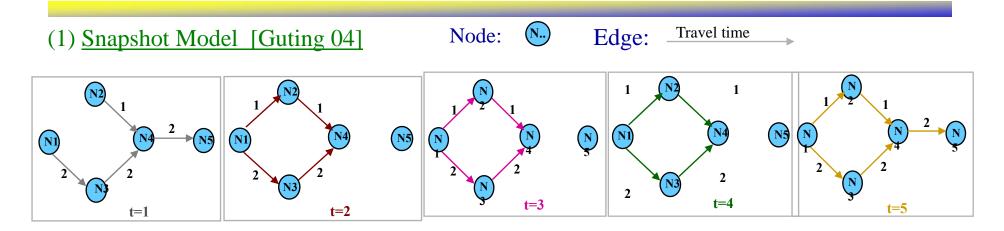
Static	Time-Variant	
Which is the shortest travel time	Which is the shortest travel time	
path from downtown Minneapolis	path from downtown Minneapolis	
to airport?	to airport at different times	
	of a work day?	
	What is the capacity of Twin-	
Cities freeway network to evacuate	Cities freeway network to evacuate	
	downtown Minneapolis at different	
	times in a work day?	

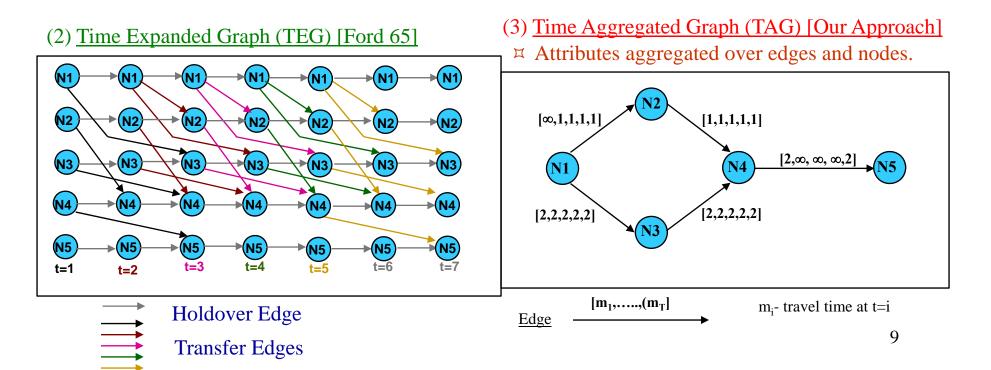
2) Crime Analysis

□ Identification of frequent routes (i.e.) Journey to Crime

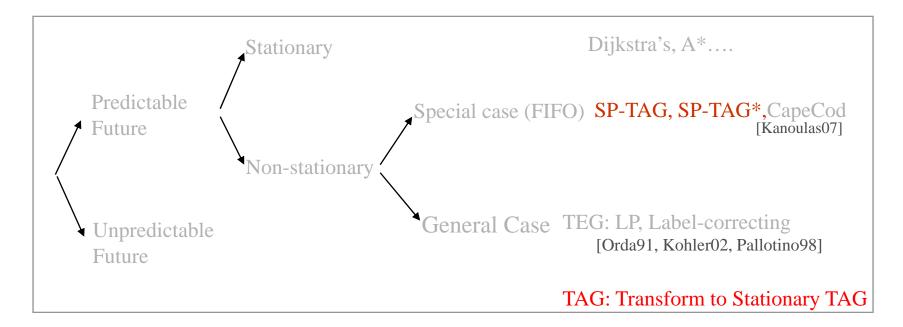
3) Knowledge discovery from Sensor data. □ Spreading Hotspots

Secret Sauce: Representation of (Spatio-)temporal Networks

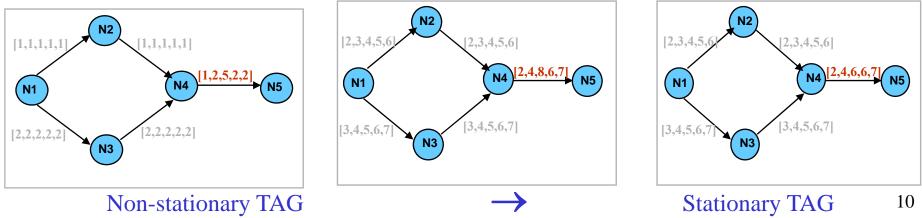




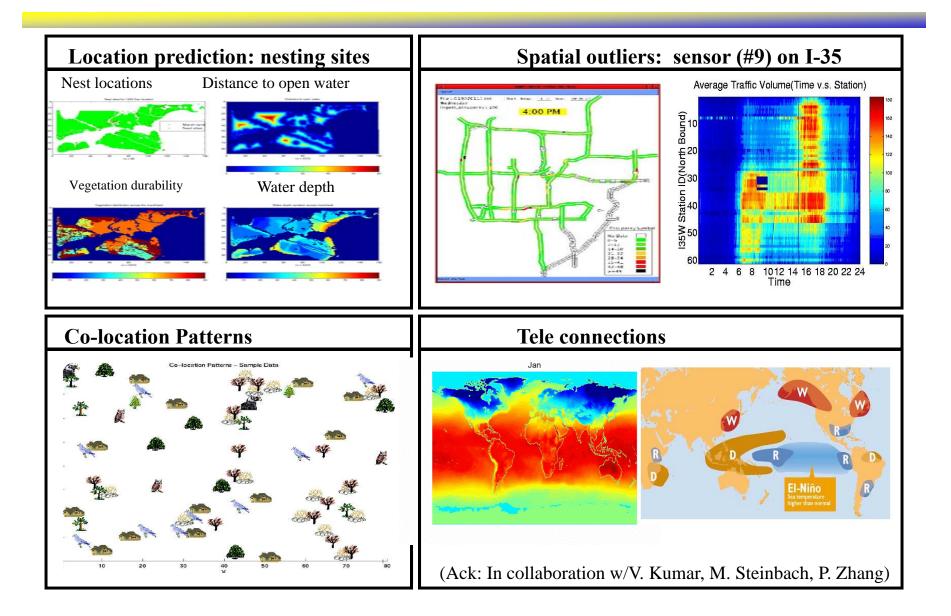
Power of Representation: Ex. Routing Algorithms



travel times \rightarrow arrival times at end node \rightarrow Min. arrival time series

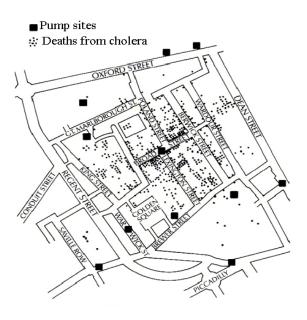


Spatial / Spatio-temporal Data Mining: Example Projects



Spatial and Spatio-temporal Data Mining

- What is it?
 - Identifying interesting, useful, non-trivial patterns
 - Hot-spots, discontinuities, co-locations, trends, ...
 - in large spatial or spatio-temporal datasets
 - Satellite imagery, geo-referenced data, e.g. census
 - gps-tracks, geo-sensor network, ...
- Why is it important ?
 - Potential of discoveries and insights to improve human lives
 - Environment: How is Earth system changing? Consequences for humans?
 - Public safety: Where are hotspots of crime? Why?
 - Public health: Where are cancer clusters? Environmental reasons?
 - Transportation, National Security, ...
 - However, (d/dt) (Spatial Data Volume) >> (d/dt) (Number of Human Analysts)
 - Need automated methods to mine patterns from spatial data
 - Need tools to amplify human capabilities to analyze spatial data



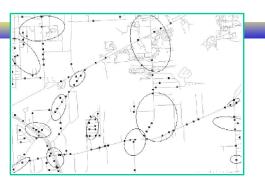
HotSpots

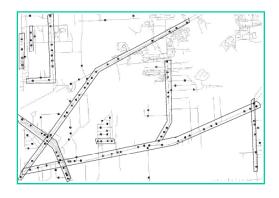
What is it?

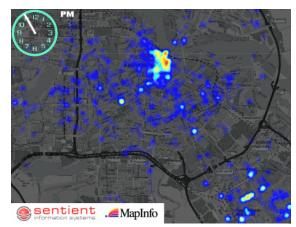
- Unusally high spatial concentration of a phenomena
 - Cancer clusters, crime hotspots
- Traditional Approach:
 - Spatial statistics based ellipsoids

Our Recent Focus:

- Computational Structure
 - Spatial Join-index reduces computational costs
- Transportation network based hotspots
- Next: Spatio-temporal
 - Ex. Emerging hot-spots

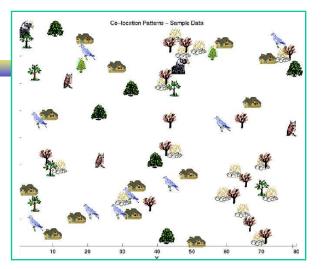


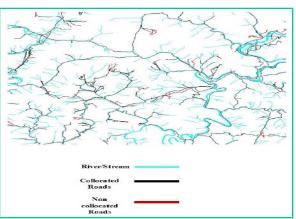




Colocation, Co-occurrence, Interaction

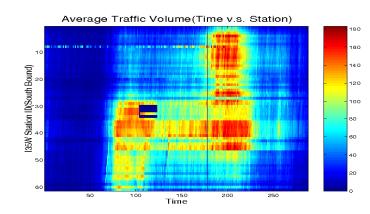
- What is it?
 - Subset of event types, whose instances occur together
 - Ex. Symbiosis, (bar, misdemeanors), ...
 - Traditional Approach:
 - Neighbor-unaware Transaction based approaches
- Our Approach:
 - Aggregate Functions on Neighbor relationships
 - Balance statistical rigor and computational cost
- Next: Spatio-temporal interactions
 - Item-types that sell well before or after a hurricane
 - Object-types that move together
 - Tele-connections

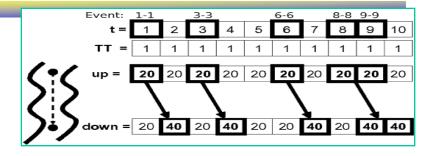


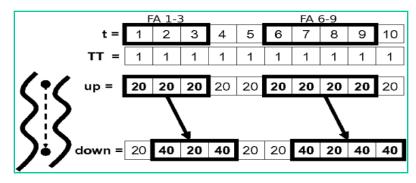


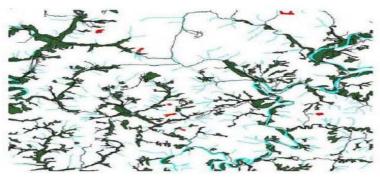
Spatial/Spatio-temporal Outliers, Anamolies

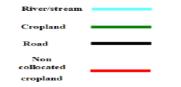
- What is it?
 - Location different from their neighbors
 - Discontinuities, flow anomalies
- Related Work
 - Transient spatial outliers
 - Anomalous trajectories
 - Computational Structure: Spatial Join
 - Very scalable using spatial DBMS
 - Next
 - (Dominant) Persistent anomalies
 - Multiple object types, Scale



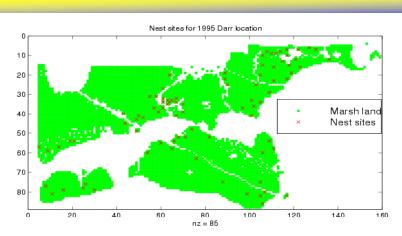






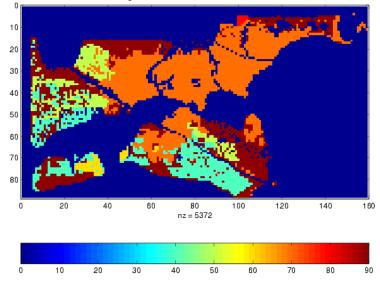


Location Prediction – An Example

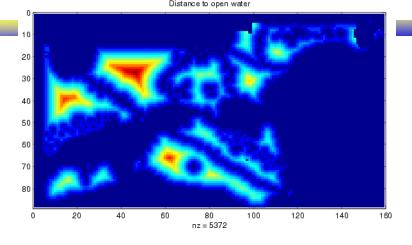


Nest locations

Vegetation distribution across the marshland

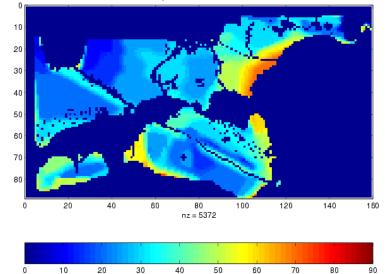


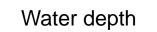
Vegetation durability



¹⁰ Distance to³⁰open water ⁵⁰

Water depth variation across marshland





Implication of Auto-correlation

Name	Model	Classification Accuracy
Classical Linear Regression	$\mathbf{y} = \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	Low
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	High

 ρ : the spatial auto - regression (auto - correlation) parameter W: *n* - by - *n* neighborho od matrix over spatial framework

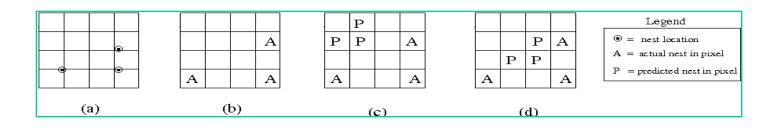
Computational Challenge:

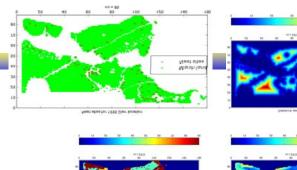
Computing determinant of a very large matrix in the Maximum Likelihood Function:

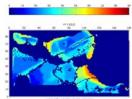
$$\ln(L) = \frac{\ln|\mathbf{I} - \rho \mathbf{W}|}{2} - \frac{n\ln(2\pi)}{2} - \frac{n\ln(\sigma^2)}{2} - SSE$$

Space/Time Prediction

- What is it?
 - Models to predict location, time, path, ...
 - Nest sites, minerals, earthquakes, tornadoes, ...
- Related Work
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression
 - Auto-correlation, e.g. spatial auto-regression
- Challenge: Independence assumption
 - Models, e.g. Decision trees, linear regression, ...
 - Measures, e.g. total square error, precision, recall
- Next
 - Spatio-temporal vector fields (e.g. flows, motion), physics
 - Scalable algorithms for parameter estimation
 - Distance based errors







SSE

 $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

 $\ln(L) = \ln \left| \mathbf{I} - \rho \mathbf{W} \right| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2}$