Spatio-temporal Data Mining for Environmental Sciences

Shashi Shekhar

McKnight Distinguished University Professor Faculty of Computer Sc. and Eng., Univ. of Minnesota www.cs.umn.edu/~shekhar

Acknowledgements

Spatial Database and Data Mining Group

- Dr. James Kang Flow Anomaly
- M. Celik, S. Chawla, C. T. Lu (Spatial Outliers), V. R. Raju, W. Wu,
 H. Yan (Colocation), J. S. Yoo, P. Zhang, etc.

Collaborators (Env. Scientists):

Prof. Paige Novak, Prof. William Arnold, Prof. Miki Hondzo, Christine Wennen, Mike Henjum

Sponsors:

NSF, USDOD, U of M OVPR

Spatio-Temporal Data Analysis

ORACLE'

Google

Recently having attention in Industry and Academia

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
- Gaps, Open Problems

Spatial and Spatio-temporal Data Mining

1. What is it?

- 1) Identifying interesting, useful, non-trivial patterns
- ② in large spatial or spatio-temporal datasets

2. Why is it important ?

- 1) Potential of insights to improve human lives
 - □ Environment: How is Earth system changing? Consequences for humans?
 - □ Public health: Where are cancer clusters? Environmental reasons?
 - □ Public safety: Where are hotspots of (env.) crime? Why?
- 2 However, (d/dt) (Spatial Data Volume) >> (d/dt) (Number of Human Analysts)
 - □ Need automated methods to mine patterns from spatial data
 - □ Need tools to amplify human capabilities to analyze spatial data

Spatial Data Mining (SDM)

1. The process of discovering

- ① interesting, useful, non-trivial patterns
 - patterns: non-specialist
 - \Box exception to patterns: specialist
- ② from large spatial datasets

2. Spatial pattern families

- 1 Hotspots, Spatial clusters
- ② Spatial outlier, discontinuities
- ③ Co-locations, co-occurrences
- 4 Location prediction models
- 5 ...

Pattern Family: Hotspots, Spatial Cluster

The 1854 Asiatic Cholera in London

Near Broad St. water pump except a brewery

Pattern Family : Predictive Models

Location & Direction Prediction:

Predict Bird Habitat Prediction Using environmental variables

Pattern Family : Co-locations/Co-occurrence

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types

Pattern Family: Spatial Anomalies

Life Cycle of Data Mining

CRISP-DM (CRoss-Industry Standard Process for DM)

- () Application/Business Understanding
- 2 Data Understanding
- ③ Data Preparation
- 4 Modeling
- **5** Evaluation
- 6 Deployment

Phases of CRISP-DM

Is CRISP-DM adequate for Spatial Data Mining?

[1] CRISP-DM URL: http://www.crisp-dm.org

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
- Gaps, Open Problems

Environment, Environmental Science

(D) Environment

- 1 surroundings; milieu
- 2 aggregate of surrounding things, conditions, or influences;.
- ③ Ecology . the air, water, minerals, organisms, and all other external factors surrounding and affecting a given organism at any time.
- ④ Social and cultural forces that shape the life of a person or a population

Q? What is the relationship to spatial / spatio-temporal analysis?

It allow inclusion of context, i.e. surrounding.

O Environmental Science

- 1 study of the interactions among the physical, chemical and biological components of the environment
- 2 branch of science concerned with the physical, chemical, and biological conditions of the environment and their effect on organisms.

Examples of Environmental Sciences

O Environmental chemistry:

- **1** Soil, water, air pollution; multi-phase transport, fate; impact on species, geology
- Study of chemical alterations in the environment.

(Atmospheric sciences:

- meteorology, greenhouse gas phenomena, airborne contaminant dispersion, ...
- Global warming: atmospheric circulation, air-borne chemicals and their reactions, carbon dioxide fluxes from life-forms, atmospheric dynamics, etc.

O Geosciences, hydrology, oceanography:

environmental geology, environmental soil science, volcanic phenomena, surface runoff, sediment transport, water turbidity, ...

Cology:

• study of organisms and their interactions with each other and their environment

- **O** Env. Health, Env. Physiology, ...
- **O** Env. Justice, Env. Criminology
- **O** Env. Engineering
- Env. Psychology, Env. Sociology
- \mathbf{I}

. . .

Water Quality

Recent studies found presence of pharmaceutical drugs in drinking water of many U.S. Cities

Source: **New York Times (April 3, 2007)** (http://www.nytimes.com/2007/04/03/science/eart h/03water.html)

• By 2025, 1.8 billion people could be living in water scarce areas

• **Today**, 750 million people live below the water-stress threshold of 1.7 K cubic meters per person Souce: WFUNA, 15 Global Challenges

Environmental Questions

1. General Public

- 1 Is water safe for drinking, swimming ?
- 2 Where are air quality warning?

2. Drinking Water Manager

- ① Is incoming water safe for water plant (reverse osmosis filters)?
- 2 Is there a change in contaminants today (compared with recent days)?

3. Environmental Scientist

- ① Transport: Where will a contaminant go?
- 2 Fate: What is the fate of a contaminant?
- ③ Are there any new processes occurring in the water bodies?

4. Environmental Forensics

- ① Where did contaminant come from ?
- 2 What are hotspots and hot moments?

5. Policy

- 1) Compare policy options on environmental impact and social good.?
- 2 How to communicate environmental decision to all stakeholders?

6. Environment Protection Agency

① What will be the impact on environment of a proposed change?

Processes, Questions

ES Domain Questions:

- Where do various contaminants go?
- Where did the contamination come from?

Path of Pollutant within the Environment (Source: Schnoor, Environmental Modeling, 1996)

Mississippi RIver

Gulf of Mexico

Datasets

Data Sources:

- Hydrology Information Systems, CUAHSI
- United States Geological Survey

Data Characteristics (HIS/USGS)

- > 1.75 Million Locations
- > 342 Million Time Instants
- > 15K Measured Variables
 - Turbidity
 - Dissolved Oxygen
 - Nitrate
 - Etc.

Hydrology Measurement Sites in US (Source: HIS/USGS)

Environmental Science: Data Analysis

Recorded View	Predictive View
(2) <u>Situational Awareness</u>	(4) <u>Knowledge Discovery</u>
Where are the hot-spots? When are Hot-moments?	What other events could occur with this pattern?
How does water quality this year compares with historic data?	e.g. Rain-event snow-melt mining => Water quality events nearby a little later
(1) <u>Data Bases, Queries</u>	(3) <u>Predictive Analysis</u>
CUAHSI	From known classes (e.g. red-tide, algal bloom,), which class of event does this represent?
USGS Captures observations and information needs	Predict water quality given other environmental (e.g. upstream) and socio- economic variables.
Time	

Problem Complexity

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies

 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
- Gaps, Open Problems

Motivation – Detailed Example

Two Use Cases:

•At the water treatment plant, when should it turn off the water supply from the river?

•Where is the source of the contaminant?

Domain Example of a Flow Anomaly

Chronicle / Kurt Rogers (Source: http://www.sfgate.com/cgi-bin/news/oilspill/busan) Notice that a contaminant event may **not** flow as a single contiguous unit.

Other Applications:

- Atmospheric Monitoring
- Pipeline Systems
- Transportation Networks

Concept: Transient Flow Anomaly

- **<u>Transient Flow Anomaly</u>** (tFA) is where the difference between the neighboring observations across each sensor is larger than the given error threshold, Θ_e
- **Ex.** Suppose $\Theta_e = 10$

A tFA may represent a single time unit of a blob in an oil spil.

Concept: Persistent Flow Anomaly

<u>Persistent Flow Anomaly</u> (pFA), is when the first and last are tFAs and the fraction of tFAs and time slots within a period satisfies the persistent threshold, Θ_n

Ex. Suppose
$$\Theta_e = 10$$
 and $\Theta_p = 0.5$

2 t = 3 For a pFA of s = 1 and e = 3, TT [t] = 1 pFA [1,2,3] exists because f(st₁) = 20 A[1] = 1 & A[3] = 1 & 2/3 >= 0.5 10 30 40 Thus, a pFA pattern is 1-3 A pFA may represent $f(st_2) =$ 90 25 0 a single blob or chunk in an oil spill. tFA [t] = 0 1

Note: A pFA is an algebraic aggregate function

4

85

Concept: Dominant Persistent Flow Anomaly

- **1.** A <u>dominant persistent Flow Anomaly</u>, *dpFA*, is a pFA that has the largest possible number of IPs and is not a subset of any other dpFA.
- **2.** Ex, Suppose $\Theta_e = 10$ and $\Theta_p = 0.5$

Note: A dpFA is a holistic aggregate function

Period 1-5 is a dpFA

because it has the largest number of IPs and not a subset of any other dpFA.

Periods 1-3 and 3-5 are not dpFAs because they are subsets of the dpFA of 1-5.

A dpFA may represent an entire oil event.

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies

 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
- Gaps, Open Problems

Problem Statement

Given

- Two stations, st_1 and st_2
- Direction of flow between the st₁ and st₂ stations
- An upstream of contiguous set of Instant Pairs, *IP*, at time intervals $t = 1 \dots n$ where *n* is the length of the time series for the s_1 sensor
- The travel time, TT[t], between the st_1 and $N(st_1)$ stations at every t
- An error threshold Θ_e and a persistent threshold Θ_p

Find

All dominant persistent Flow Anomalies (dpFAs)

Objective

Minimize computation time

Constraints

- A single directional flow between sensors
- Correct and complete

Problem Statement: Example

Output: dpFAs of 1-3 and 6-10

Note: period 1-10 is NOT a dpFA because it does not satisfy the persistence threshold

Challenges and Related Work

A single dpFA pattern may consist of subsets that may not be anomalies

- Violates Dynamic Programming Principle of having optimal substructure
 - String Matching [Lee, VLDB, '07], [Amir, J. Algorithms, '97]
 - Time Series [Keogh, KDD, '99]
- Due to the fact that a pFA is an *algebraic aggregate function* that must satisfy a persistent threshold, Θ_p

The size of the dpFAs may not be known in advance

Fixed Window Methods [Bulut, ICDE, '05], [Chen, ASIAN, '05], [Sakurai, SIGMOD, '05], [Sayal, HP, '04] Challenges and Related Work – Contd.

Outlier Detection may <u>not</u> find Transient FA [Knorr & Ng, KDD '97] [Shekhar et al., KDD '01]

Ex. Suppose $\Theta_e = 10$

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies

 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
- Gaps, Open Problems

Our Contributions

- **Define Flow Anomalies (FA) and the FA Mining Problem**
- New interest measures to discover and mine FAs
- Methods
 - Naïve Approach
 - A Smart Window Enumeration and Evaluation of persistent Thresholds (SWEET) Approach
 - □ A Smart Counter Design Decision
 - □ A Pruning Strategy
 - An Expanded Ranges Index (SWEET-ER)
 - **Analytical Evaluation**
- **Experimental Evaluation**
 - Synthetic and Real Datasets

Naïve Approach

In general, need to check every time period size to determine if it is anomalous or not.

- Utilize the travel time to identify the anomalous time periods
- Exhaustive search for all possible time period sizes
 - Evaluate each period for number of tFAs and if it satisfies the persistent threshold
- Example next slide

Naïve Approach Example

Analytical Evaluation Computational Costs

Complexity: (Phase 1 costs + Phase 2 costs)

	Worst Case
Naïve	n ³ + p ²

- n is the total number of time slots in the dataset
- t is the number of tFAs found in the dataset and t <= n</p>
- p is the number of pFAs found in the dataset and $t \le p \le t^2$

Search Space

Examine all possible periods in this example in a Matrix and a Graph Observed THREE key insights to improve overall efficiency
Search Space: Matrix

Illustration of All Candidate Time Intervals

Search Space: Partial-Order Graph 1-1 1-2 2-2 Search space can also be 2-3 1-3 3-3 represented as a Partial-1-4 2-4 3-4 4-4 **Order Graph** 2-5 3-5 1-5 4-5 5-5 2-6 3-6 1-6 4-6 5-6 6-6 1-7 2-7 3-7 4-7 5-7 6-7 7-7 2-8 6-8 3-8 1-8 4-8 5-8 8-8 7-8 3-9 6-9 2-9 4-9 5-9 9-9 1-9 7-9 8-9 (4-10) 7-10 1-10 2-10 ์ 3-10 5-10 6-10 8-10 9-10 10-10

Lemma 1: Prune Ancestors of non-tfa

SWEET Approach

SWEET Approach

Phase 1: Identify the pFAs

Enumerate and evaluate periods that start and end with a tFA (Lemma 1)

Phase 2: Identify the dpFAs

Design Decisions

- Smart Counter (Lemma 3)
- Pruning Strategy (Lemma 2)
- Detail Execution Trace next slide
- Computation Cost reduces
 - Naïve: O (N

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
- Gaps, Open Problems

SWEET-ER Approach Key Ideas

Disadvantage in both Naïve and SWEET

Exhuastive search of persistent FAs in second phase to find dominant pFAs

Expanded Regions

- In Phase 1, maintain an index of dominant pFAs as persistent FAs are discovered (Lemma 2)
- In Phase 2, single scan of ER to identify dominant pFAs

Analytical Evaluation: Computational Costs

Complexity: (Phase 1 costs + Phase 2 costs)

	Worst Case
Naïve	n ³ + p ²
SWEET	t ³ + p ²
SWEET [p]	t ³ + p ²
SWEET [s]	t² + p²
SWEET [s+p]	t² + p²
SWEET-ER [s+p]	t² + n

- n is the total number of time slots in the dataset
- t is the number of tFAs found in the dataset and t <= n</p>
- p is the number of pFAs found in the dataset and $t \le p \le t^2$

- **Theorem 1 and 3:** SWEET and SWEET-ER are correct, i.e., all discovered patterns satisfy the dpFA definition.
- **Theorem 2 and 4:** SWEET and SWEET-ER are complete, i.e., all dominant pFA patterns are found.

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies

 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
- Gaps, Open Problems

Experimental Evaluation: Setup

- Experimental Question: What is the effect in the size of the time series?
- Measured in terms of: Execution (CPU) Time
- Methods: Naïve, SWEET, SWEET (s), SWEET (s+p), SWEET-ER (s+p)
- Hardware: P4 2.0 GHz, 1.2 GB RAM

Synthetic: What is the effect on the size of the time series?

Synthetic Generator	Experimental
Parameters	Parameters
Travel Time = 10	Travel Time = 10
$\Theta_e = 10$	$\Theta_e = 10$
% # of Anomalies: 30%	$\Theta_{\rm p} = 0.80$

At 5K, Naïve takes a little more than **3 hours** to complete, whereas SWEET(s+p) takes a half a second

Synthetic: What is the effect on the size of the time series?

Synthetic Generator	Experimental
Parameters	Parameters
Travel Time = 10	Travel Time = 10
$\Theta_e = 10$	$\Theta_e = 10$
% # 01 Anomalies. 10%	$\Theta_{\rm p} = 0.80$

As expected, SWEET-ER performs far better than SWEET due to the ER index

Real Data Sets

1. Shingle Creek

① Stations 5 to 1

Datas

5K ti

Dataset 1: Turbidity:
 3K-15K time intervals

Sensor Setup

Turbidity

Dissolved Oxygen

Wireless Sensor Network

Station #3

Station #5

Real Dataset: What is the effect on the size of the time series?

Experimental Parameters

Travel Time = Variable (From Input)

 $\Theta_{e} = 10$

 Θ_{a} = 0.80

At 3K, Naïve takes a little more than **1 hour** to complete, whereas SWEET(s+p) takes a half a second

Real Dataset: What is the effect on the size of the time series?

Experimental Parameters

Travel Time = Variable (From Input)

 $\Theta_{e} = 10$

 Θ_{a} = 0.80

Perfomance gain of SWEET-ER between 12K to 15K due to an increase in number of candidates creating more time needed in SWEET

Domain-based Validation

- **1.** What are Flow Anomalies really?
- 2. Based on the data available, can we determine why a flow anomaly occurred?

Domain-based Validation: Dissolved Oxygen

Longest Flow Anomaly Result (Error: +/- 5, Persistent: 80%) Start: 6/4/2008 13:06 End: 6/5/2008 19:34

Domain-based Validation: Rain Fall

High Rain Fall around June 4-5, 2008 time frame

Domain-based Validation

- 1. It was observed that the retention pond near sensor 4 has very low DO
- 2. So when a rain event occurs, the water from the pond flushes into the stream between sensors 5 and 1
- **3.** Resulting in a Flow Anomaly for DO

Discovering Flow Anomalies Summary

Introduced the FA mining problem and Flow-based Patterns

- New concepts and interest measures
- Proposed Naïve, SWEET and SWEET-ER approaches
- Analytical Evaluation
- Experimental Evaluation
 - Synthetic and Real Datasets

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
- Gaps, Open Problems

Domain Modeling Spatio-temporal Data Mining

Teleconnected Flow Anomaly

A <u>Teleconnected</u> <u>Flow Anomaly</u>

A pair of FAs based on its velocity field.

Challenge

 Increase in Combinatorics

Contributions

- ST Dynamic Neighborhood Model
- RAD Approach

J. M. Kang, S. Shekhar, M. Henjum, P. Novak, W. Arnold, Discovering Teleconnected Flow Anomalies: A Relationship Analysis of spatio-temporal Dynamic (RAD) neighborhoods, *In SSTD*, 2009.

Spatial Data Mining and Science

1. Understanding of a physical phenomenon

- 1 Though, final model may not involve location
 - □ Cause-effect e.g. Cholera caused by germs
- ② Discovery of model may be aided by spatial patterns
 - □ Many phenomenon are embedded in space and time
 - Ex. 1854 London Cholera deaths clustered around a water pump
 - Spatio-temporal process of disease spread => narrow down potential causes
 - □ Ex. Recent analysis of SARS

2. Location helps bring rich contexts

- 1 Physical: e.g., rainfall, temperature, and wind
- 2 Demographical: e.g., age group, gender, and income type
- ③ Problem-specific, e.g. distance to highway or water

Future Work cont'd Domain-based Computational Challenges

- Multi-paths and complex networks
 - Exponential growth in paths

- Handling mixing for water bodies
 - 1:M and M:N relationships
- Uncertainty in Travel Time
 - All path and All time search for patterns

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
- Gaps, Open Problems

Domain Modeling Spatio-temporal Data Mining

Traditional	Spatial	Spatio-Temporal
Clustering	Hotspot	Spreading Hotspots
Outlier	Spatial Outlier	Flow Anomaly
Association Rules	Co-Locations	Teleconnections
Prediction	Location Prediction	Path Prediction

Real-Time Flow Anomalies

- Discover FA based on a time-constraint
- Apply Transient, Persistent, Dominant concepts to other spatial pattern families
 - Ex. Hotspot Analysis, Co-locations, etc.

HotSpots

- What is it?
 - Unusally high spatial concentration of a phenomena
 - Cancer clusters, crime hotspots
- Solved
 - Spatial statistics based ellipsoids
- Almost solved
 - Transportation network based hotspots
- Failed
 - Classical clustering methods, e.g. K-means
- Missing
 - Spatio-temporal
- Next
 - Emerging / Spreading hot-spots

Colocation, Co-occurrence, Interaction

- What is it?
 - Subset of event types, whose instances occur together
 - Ex. Symbiosis, (bar, misdemeanors), ...
- Solved
 - Colocation of point event-types
- Almost solved
 - Co-location of extended (e.g.linear) objects
 - Object-types that move together
- Failed
 - Neighbor-unaware Transaction based approaches
- Missing
 - Consideration of flow, richer interactions
- Next
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections

Space/Time Prediction

- What is it?
 - Models to predict location, time, path, ...
 - Nest sites, minerals, earthquakes, tornadoes, ...
- Solved
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression
- Almost solved
 - Auto-correlation, e.g. spatial auto-regression
- Failed: Independence assumption
 - Models, e.g. Decision trees, linear regression, ...
 - Measures, e.g. total square error, precision, recall
- Missing
 - Spatio-temporal vector fields (e.g. flows, motion), physics
- Next
 - Scalable algorithms for parameter estimation
 - Distance based errors

$$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Legend \mathbf{P} \mathbf{P} nest location
 А А \mathbf{P} \mathbf{A} = actual nest in pixel \mathbf{P} \mathbf{P} = predicted nest in pixel А А А А (b) (a) (\mathbf{d})

Spatial/Spatio-temporal Anamolies

- What is it?
 - Location different from their neighbors
 - Discontinuities, flow anomalies
- Solved
 - Transient spatial outliers
- Almost solved
 - Anomalous trajectories
- Failed
- Missing
 - Persistent anomalies
 - Multiple object types, Scale
- Next
 - Multi-criteria Anomalies

160 140

120 100

(Geo) Informatics across Disciplines!

WEEV GENES IN PROBABILITY AND STATISTICS