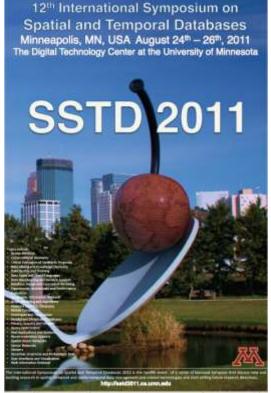
Transportation Data Mining: Vision & Challenges

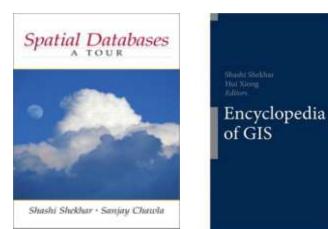
Shashi Shekhar

McKnight Distinguished University Professor University of Minnesota www.cs.umn.edu/~shekhar

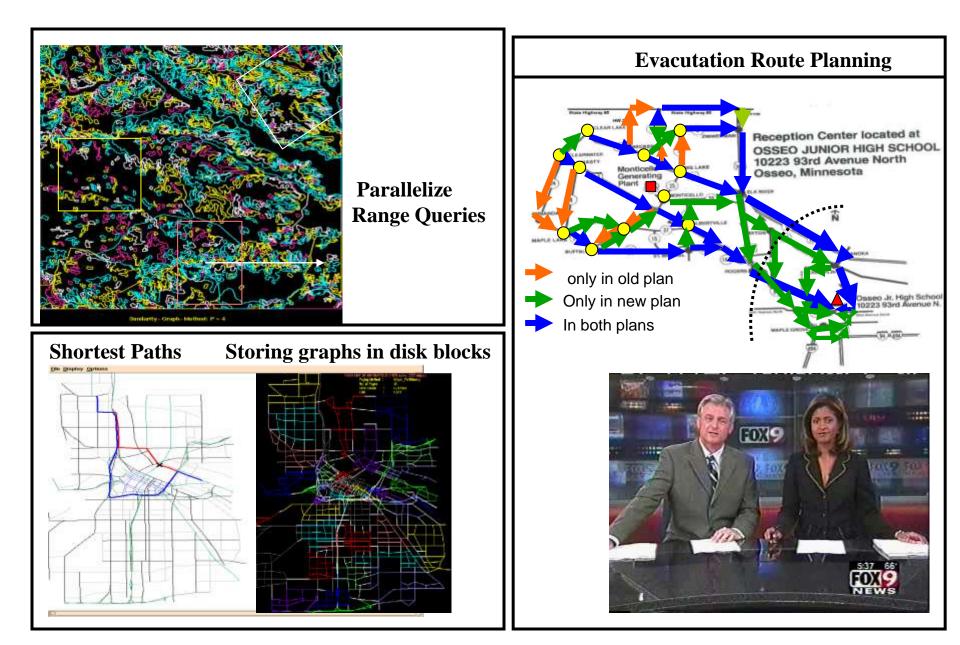
Pervasive Data for Transportation: Innovations in Distributed and Mobile Information Discovery in ITS & LBS Transportation Research Board Meeting 182

January 23rd, 2011.

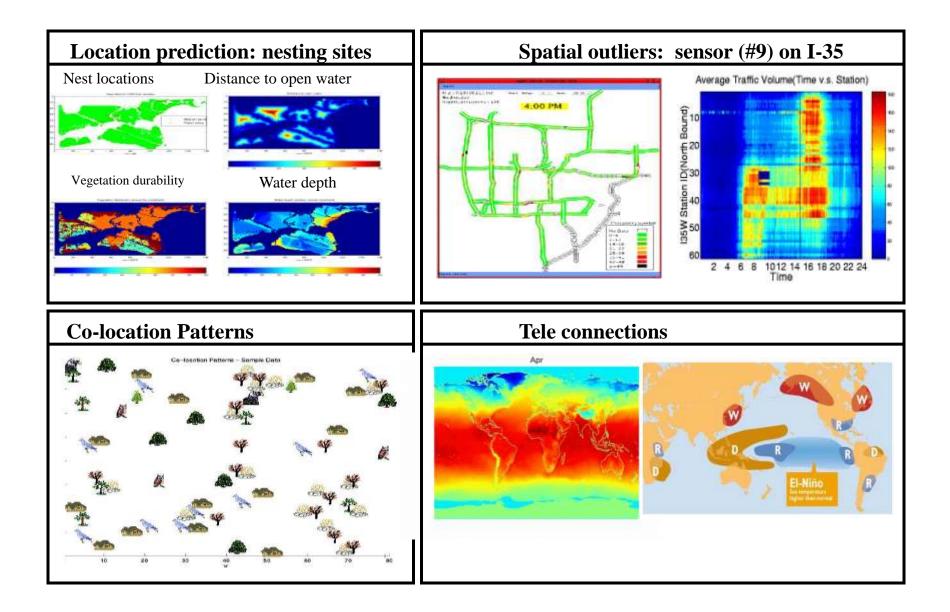

GEOINFORMATICA


Vocant 9, Nonnes 2, June 200

COR. TORAL P.


Springer

Springer



Spatial Databases: Representative Projects

Spatial Data Mining : Representative Projects

Outline

- Motivation
 - Transportation Questions
 - Transportation Theories
 - Limitations of theories
- Data mining
- Conclusions

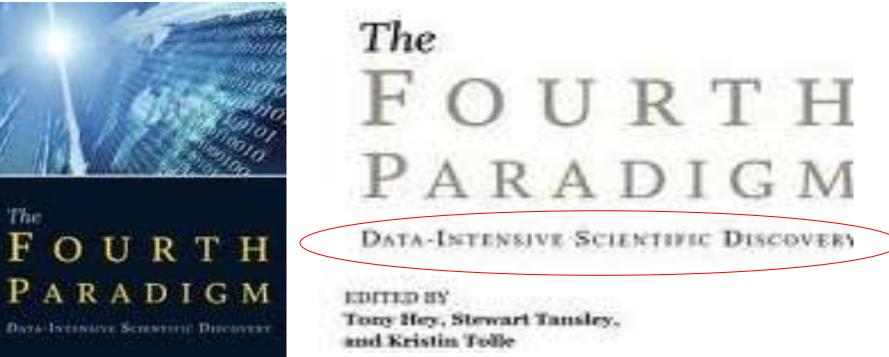
Questions in Transportation Domain

- Traveler, Commuter
 - What will be the travel time on a route?
 - Will I make to destination in time for a meeting?
 - Where are the incident and events?
- Transportation Manager
 - How the freeway system performed yesterday?
 - Which locations are worst performers?
- Traffic Engineering
 - Which loop detection are not working properly?
 - Where are the congestion (in time and space)?
 - How congestion start and spread?
- Planner and Researchers
 - What will be travel demand in future?
 - What will be the effect of hybrid cars?
 - What are future bottlenecks? Where should capacity be added?
- Policy
 - What is an appropriate congestion-pricing function?
 - Road user charges: How much more should trucks pay relative to cars?

Theories in Transportation Domain

- Physics
 - Traffic: Fluid flow models (e.g. reduce turbulence), control theory
 - How to reduce icing on pavements?
- Chemistry
 - Environmental impact (e.g. salt, incomplete combustion)
- Biology
 - How to reduce crash-injury severity?
 - Effect of age, sleep deprivation, toxins, ...
- Psychology
 - Human factors: design of highway signage, vehicle dashboard
 - Activity and agent based models
- Sociology
 - Household decisions, Homophily and social networks
 - Lack of trust => aggressive driving
- Economics, Game Theory
 - Incentive mechanisms
 - Wardrop equilibrium among commuters
 - Ex. All comparable paths have same travel time!

Limitations of Theories


- Multi-disciplinary questions:
 - Will hybrid cars reduce environmental impact of transportation?
 - Extreme events evacuation, conventions, ...
 - Impact of context weather, climate, economy, politics, crime, police cars, ...
 - Mono-disciplinary questions
 - Non-equilibrium phenomena, e.g. location, time and path
 - Critical places & moments: Accident hotspots (hot-moments)? Why?
 - Normality & anomalies: e.g. traffic flow discontinuities location, cause
 - Regional difference: effectiveness of Ramp meters across places & time-periods

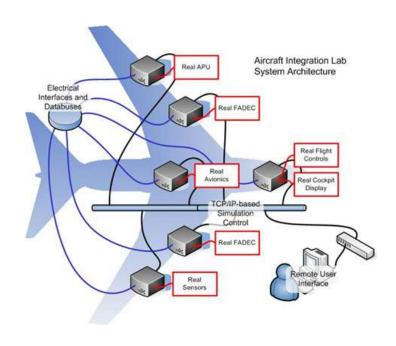
• What are the **options** to complement theory based approaches?

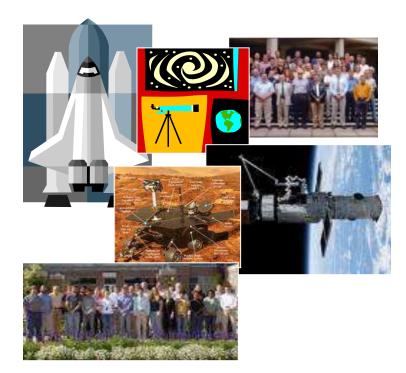
Data-Intensive Scientific Discovery

- Classical Approach
 - Travel diaries, NHTS survey (OD matrix), Lab. (mpg rating)
 - Hypothesis driven data collection, Statistical hypothesis testing
- Emerging Data-Intensive Approach
 - Secondary Data: Engine computer, gps, cell-phones, face-book,VGI,
 - Exploratory data analysis for hypothesis generation
 - Ex. Data Mining and Knowledge Discovery

Outline

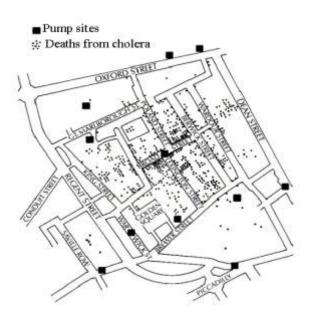
- Motivation
- Data mining
 - Case Studies
 - Definition
- Pattern Families
- Conclusions


Adoption of Data Mining


- Example: IBM Smarter Planet Initiative, SAS, ...
 - Large Organizations: Walmart, USDOD, ...
- 1990s: Data Mining
 - Scale up to traditional models to large relational databases
 - Linear regression, Decision Trees, ...
 - New pattern families: Association rules
 - Which items are bought together? E.g. (Diaper, beer)
- Spatial customers
 - Walmart
 - •Which items are bought just before/after events, e.g. hurricanes?
 - •How to send these items to appropriate stores?
 - Where is (diaper-beer) pattern prevalent?
 - Center for Disease Control: cancer clusters
 - Police: crime hotspots
 - USDOD, intelligence: anomaly detection, link analysis

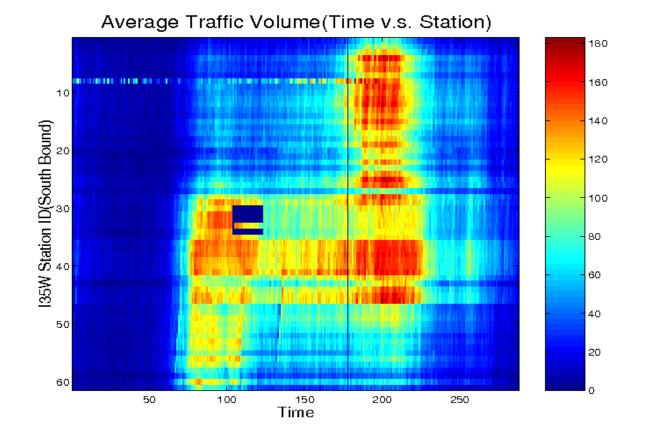
Serious Scientists are also using Data Mining!

Example: NASA IVMS Data Mining Laboratory


The lab enables the dissemination of Integrated Vehicle Health Management data, algorithms, and results to the public. It will serve as a national asset for research and development of discovery algorithms for detection, diagnosis, prognosis, and prediction for NASA missions.

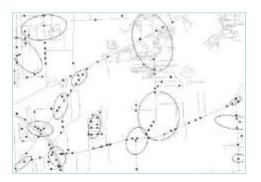
Data Mining

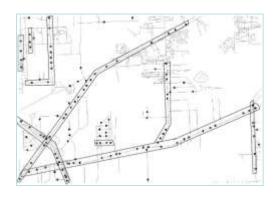
- What is it?
 - Identifying interesting, useful, non-trivial patterns
 - Hot-spots, anomalies, associations, precursors
 - in large datasets
 - Infrastructure:
 - Aerial surveillance (e.g. ARGUS-IS)
 - Geo-sensor network (loop detector, cameras), ...
 - Volunteered: cell-phone, gps, social network
- Importance
 - Potential of discoveries and insights to improve lives
 - Traffic Management: Where and when are traffic flow anomalies? Why?
 - Safety: Where are accident hotspots? Why?
 - (Tele)-connection: traffic-congestion & events (e.g. weather, conventions)
 - Transportation Planning: How is demand changing? Consequences?
- Challenge:
 - (d/dt) (Data Volume) >> (d/dt) (Number of Human Analysts)
 - Need automated methods to mine patterns from data
 - Need tools to amplify human capabilities to analyze data

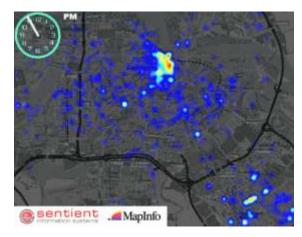


Outline

- Motivation
- Data mining
- Pattern Families
 - Spatial outliers
 - Hotspots
 - Co-occurrences
 - Prediction
- Conclusions

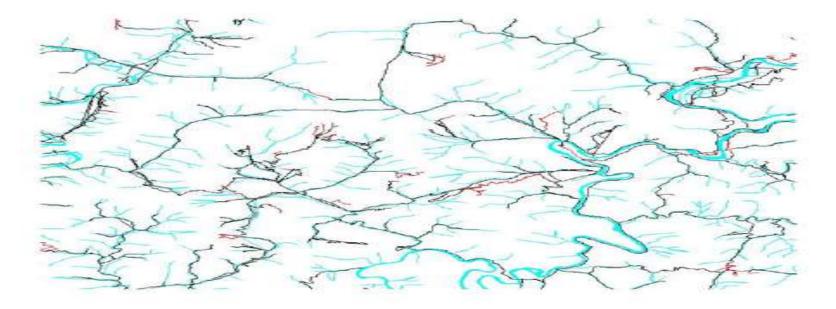

Example 1: Anomalies


- Example Sensor 9
 - Will sensor 9 be detected by traditional outlier detection ?
 - Is it a global outlier ?



Example 2: HotSpots

- What is it?
 - Unusally high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis
- Solved
 - Spatial statistics based ellipsoids
- Almost solved
 - Transportation network based hotspots
- Next
 - Emerging hot-spots


Example 3: Associations, Co-locations, Co-occurrences

- Road user-charges:
 - Is technology available for road-type based policy?
 - Which road segments are vulnerable for mis-classification?
 - Issue: accuracy or GPS & digital roadmaps

Example 3b: Associations

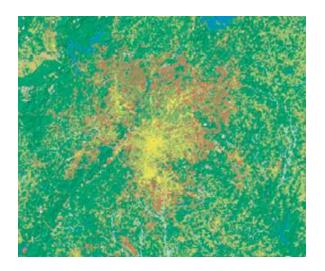
- Which following transportation networks co-occur? Where? Why?
 - e.g. roads, river, railroads, air, etc..in North Korea

River/Stream

Road-River/Stream Colocation Collocated Roads

Non collocated Roads

Example 4: Prediction


- Impact
 - Deforestation Brazil lost 150,000 sq.
 km. of forest between 2000 and 2006
 - Urban Sprawl
- Environmental Aspects
 - Deforestation
 - Habitat loss, endangered species
 - Water and air quality
 - Climate change (?)

- ...

- Urgent issues => Policy changes
 - Brazil: real-time monitoring of forests
 - USA: from VMT to access

Deforestation in Brazil (Source: Encyclopedia of Earth)

Urban Sprawl in Atlanta (Red indicates expansion between 1976 and 1992)

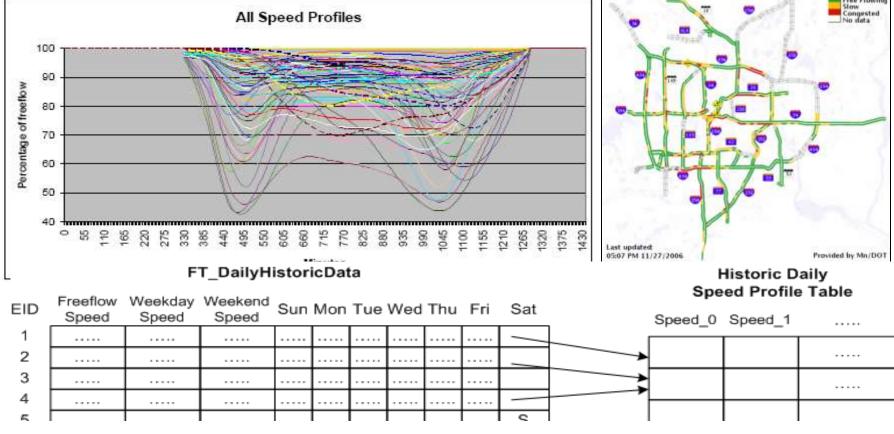
Example 4: Prediction

- Transportation Planning
 - What will be the impact of a new office building?
 - What will be travel demand? future bottlenecks?
 - What will be the effect of hybrid cars on traffic?
 - How will better bicycle facility impact vehicle traffic?
- Q? Are classical techniques (e.g. Decision trees, SVM, ...) adequate?
- Challenges
 - Spatio-temporal auto-correlation violates independence assumption
 - Network : routes, edge capacities, ...
 - Individual behavior: urban sprawl?
 - Group dynamics: game theory, Wardrop equilibrium, ...

Outline

- Motivation
- Data mining
- Conclusions
 - Summary
 - Research Challenges

Summary

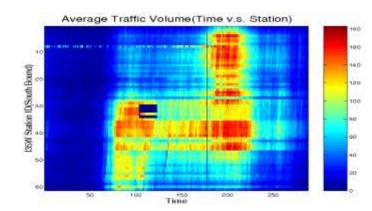

- It's time for transportation community to give serious consideration to data mining and knowledge discovery!
- Transportation is facing new challenges
 - Climate change driven policy changes
- Classical approaches are limited
 - Multi-disciplinary problems, non-equilibrium scenarions,
 - Extreme events
- Data-Intensive Scientific Discovery
 - Complements classical approaches: Hypothesis generation
 - Secondary datasets are growing
 - Data mining technology is maturing

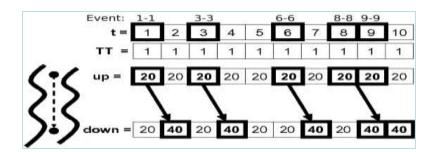
Datasets in Transportation Domain

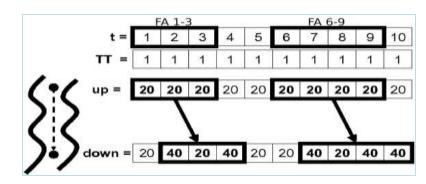
- Datasets
 - Reports on accidents, traffic law violation
 - Travel diaries and surveys
 - Traffic simulator (e.g. DYNASMART) outputs
 - Loop-detector: traffic volume, density, occupancy, ...
 - Traffic camera videos
 - Automatic vehicle location and identification
 - from GPS, cell-phone, automatic tolling transponder, etc.
 - Other sensors: bridge strain, visibility (in fog), ice, ...
 - Yellow Pages, street addresses
- Characteristics
 - Spatio-temporal networks

New Datasets: Speed Profiles

- Transportation
 - •Road networks: Nodes = road intersections, Edge = road segments
 - Edge-attribute: travel time; Navteq reports it a function of time!
- •Operations:
 - Hot moments (i.e. rush hours), Hotspots (i.e. congestion)
 - Fastest Path, Evacuation capacities of routes

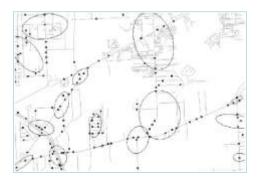

Transportation Data Mining: Computational Challenges

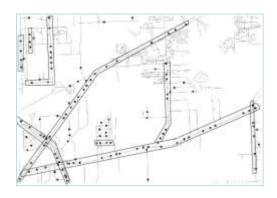

- Violates assumptions of classical data mining
 - Lack of independence among samples ? Decision trees, …
 - No natural transactions -? Association rule, ...
- Two kinds of spaces
 - Embedding space, e.g. Geography, Network, Time
 - Feature space, e.g. Traffic volume, accidents, ...
- Lessons from Spatial thinking
 - 1st Law: Auto-correlation: Nearby things are related
 - Heterogeneity
 - Edge effect
 - ...

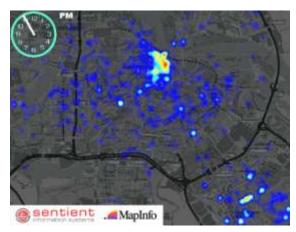

Spatial/Spatio-temporal Outliers Challenges

What is it?

- Location different from their neighbors
 - Discontinuities, flow anomalies
- Solved
 - Transient spatial outliers
- Almost solved
 - Anomalous trajectories
- Failed
- Missing
 - Persistent anomalies
 - Multiple object types, Scale
- Next
 - Dominant Persistent Anomalies

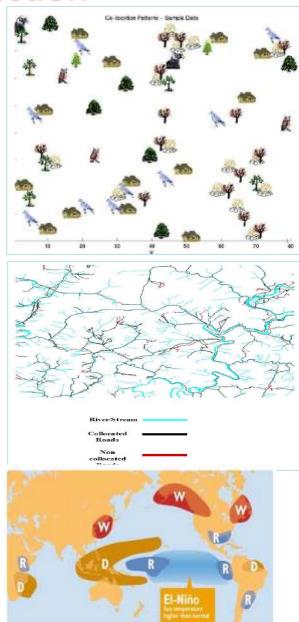




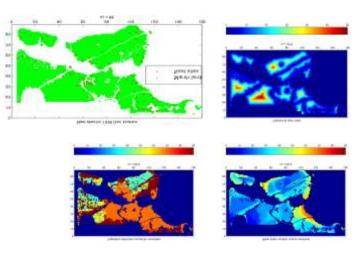


HotSpots

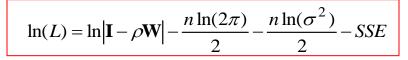
- What is it?
 - Unusally high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis
- Solved
 - Spatial statistics based ellipsoids
- Almost solved
 - Transportation network based hotspots
- Failed
 - Classical clustering methods, e.g. K-means
- Missing
 - Spatio-temporal
- Next
 - Emerging hot-spots

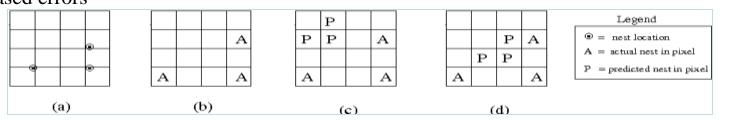


Colocation, Co-occurrence, Interaction


What is it?

- Subset of event types, whose instances occur together
- Ex. Symbiosis, (bar, misdemeanors), ...
- Solved
 - Colocation of point event-types
- Almost solved
 - Co-location of extended (e.g.linear) objects
 - Object-types that move together
- Failed
 - Neighbor-unaware Transaction based approaches
- Missing
 - Consideration of flow, richer interactions
- Next
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections




Space/Time Prediction

- What is it?
 - Models to predict location, time, path, ...
 - Nest sites, minerals, earthquakes, tornadoes, ...
- Solved
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression
- Almost solved
 - Auto-correlation, e.g. spatial auto-regression
- Failed: Independence assumption
 - Models, e.g. Decision trees, linear regression, ...
 - Measures, e.g. total square error, precision, recall
- Missing
 - Spatio-temporal vector fields (e.g. flows, motion), physics
- Next
 - Scalable algorithms for parameter estimation
 - Distance based errors

$$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Implication of Auto-correlation

Name	Model	Classification Accuracy
Classical Linear Regression	$\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$	Low
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	High

 ρ : the spatial auto - regression (auto - correlatio n) parameter W: *n* - by - *n* neighborho od matrix over spatial framework

Computational Challenge:

Computing determinant of a very large matrix in the Maximum Likelihood Function:

$$\ln(L) = \frac{\ln|\mathbf{I} - \rho \mathbf{W}|}{2} - \frac{n\ln(2\pi)}{2} - \frac{n\ln(\sigma^2)}{2} - SSE$$