Transportation Data Mining Challenges

Shashi Shekhar

McKnight Distinguished University Professor University of Minnesota www.cs.umn.edu/~shekhar

> Next Generation Data Mining Session of Transportation

> > October 2nd, 2009

Spatial Databases: Representative Projects

Spatial Data Mining : Representative Projects

Outline

- Transportation domain
 - Questions
 - Stakeholders
 - Datasets
- A transportation dataset
- Data Mining Challenges
- Summary

Transportation Questions

- Traveler, Commuter
 - What will be the travel time on a route?
 - Will I make to destination in time for a meeting?
 - Where are the incident and events?
- Transportation Manager
 - How the freeway system performed yesterday?
 - Which locations are worst performers?
- Traffic Engineering
 - Which loop detection are not working properly?
 - Where are the congestion (in time and space)?
 - How congestion start and spread?
- Planner and Researchers
 - What will be travel demand in future?
 - What will be the effect of hybrid cars?
 - What are future bottlenecks? Where should capacity be added?
- Policy
 - What is an appropriate congestion-pricing function ?
 - Road user charges: How much more should trucks pay relative to cars?

Transportation Knowledge

- Classical data:
 - travel diaries, NHTS survey (e..g. OD matrix), Lab. (mpg rating)
- Physics
 - Fluid flow models for traffic
 - Reduce turbulence (i.e. lane weaving) to improve flow
- Chemistry, Biology
 - Environmental impact analysis (e.g. salt)
- Psychology: Individual Behavior
 - Lack of trust => aggressive driving,
 - Activity leads to travel, agent based model
- Socio-Economics: Group Dynamics
 - Social interaction: Household
 - Game thoery: Wardrop equilibrium in commuter traffic
 - All comparable paths have same travel time!
 - Incentive mechanism
- Why data mining?
 - New datasets engine computers, traffic sensors, gps-tracks,
 - Finer resolution non-equilibrium phenomena, ...
 - Extreme events evacuation, conventions, ...
 - Causal insights ?

New Datasets Datasets

- Transportation
 - •Road networks
 - Nodes = road intersections
 - Edge = road segments
 - Edge-attribute: travel time
 - •Navteq reports it a function of time!
- •Operations:
 - Hot moments (i.e. rush hours)
 - Hotspots (i.e. congestion)
 - Fastest Path
 - Evacuation capacities of routes

194 @ Hamline Ave at 8AM & 10AM

Traffic sensors on Twin-Cities, MN Road Network monitor traffic levels/travel time on the road network. (Courtesy: MN-DoT (www.dot.state.mn.us))

Transportation Domain

- Datasets
 - Travel diaries and surveys
 - Traffic simulator outputs
 - Accident reports, traffic law violation reports
 - Loop-detector measurement of traffic volume, density, occupancy, etc.
 - Traffic camera videos
 - Automatic vehicle location and identification
 - from automatic tolling transponder, gps, etc.
 - Other sensors: bridge strain, visibility (in fog), ice, ...
 - Yellow Pages, street addresses
- Characteristics
 - Spatio-temporal networks

Outline

- Transportation domain
- A transportation dataset
 - Map of sensor network
 - Spatio-temporal dimensions
 - Summary visualizations
- Data Mining Challenges
- Summary

Loop-detector on Twincities Highways

Dimensions

- Available
 - T_{TD} : Time of Day
 - T_{DW} : Day of Week
 - T_{MY} : Month of Year
 - S : Station, Highway, All Stations
- Others
 - Scale, Weather, Seasons, Event types, ...

Mapcube : Which Subset of Dimensions ?

Singleton Subset : T_{TD} Configuration: • X-axis: time of day; Y-axis: Volume • For station sid 138, sid 139, sid 140, on 1/12/1997

Trends: • Station sid 139: rush hour all day long

Station sid 139 is an S-outlier

Singleton Subset: T_{DW}

X axis: Day of week; Y axis: Avg. volume.

• Configuration:

For stations 4, 8, 577

Avg. volume for Jan 1997

Trends:

Friday is the busiest day of week
 Tuesday is the second busiest day of week

Singleton Subset: S

Configuration:

• X-axis: I-35W South; Y-axis: Avg. traffic volume

• Avg. traffic volume for January 1997

Two outliers: 35W/26S(sid 576) and 35W/TH55S(sid 585)

Dimension Pair: T_{TD} - T_{DW}

Configuration:

- X-axis: time of date; Y-axis: day of Week
- f(x,y): Avg. volume over all stations for Jan 1997, except
 Jan 1, 1997

Trends:

- Evening rush hour broader than morning rush hour
 - Rush hour starts early on Friday.
 - Wednesday narrower evening rush hour

Dimension Pair: $S-T_{TD}$

Configuration:

- X-axis: Time of Day
- Y-axis: Highway
 - f(x,y): Avg. volume over all stations for 1/15, 1997

Trends:

- 3-Cluster
 - North section: Evening rush hour
 - Downtown area: All day rush hour
 - South section:Morning rush hour
 - S-Outliers
 - station ranked 9th
 - Time: 2:35pm
- Missing Data

Dimension Pair: T_{DW}-S

X-axis: stations; Y-axis: day of week

Configuration: • f(x,y): Avg. volume over all stations for Jan-Mar 1997

- Trends: Busiest segment of I-35 SW is b/w Downtown MPLS & I-62
 - Saturday has more traffic than Sunday
 - Outliers highway branch

Triplet: $T_{TD}T_{DW}S$: Compare Traffic Videos

Configuration: Traffic volume on Jan 9 (Th) and 10 (F), 1997

Evening rush hour starts earlier on Friday

Trends:

Congested segments: I-35W (downtown Mpls – I-62);
 I-94 (Mpls – St. Paul); I-494 (intersection I-35W)

Size 4 Subset: $T_{TD}T_{DW}T_{MY}S$ (Album)

Outer: X-axis (month of year); Y-axis (highway)

Inner: X-axis (time of day); Y-axis (day of week)

Feb

Jan

Trends:

Configuration:

- Morning rush hour: I-94 East longer than I-35 W North
- Evening rush hour: I-35W North longer than I-94 East
- Evening rush hour on I-94 East: Jan longer than Feb

Outline

- Transportation domain
- A transportation dataset
- Data mining issues
 - Spatio-temporal networks
 - Spatial outliers
 - Hotspots
 - Co-occurrences
 - Location prediction
- Summary

Data Mining

- What is it?
 - Identifying interesting, useful, non-trivial patterns
 - Hot-spots,
 - in large spatial or spatio-temporal datasets
 - Satellite imagery, geo-referenced data, e.g. census
 - gps-tracks, geo-sensor network, ...
- Why is it important?

- Potential of discoveries and insights to improve human lives
 - Environment: How is Earth system changing? Consequences for humans?
 - Public safety: Where are hotspots of crime? Why? •
 - Public health: Where are cancer clusters? Environmental reasons? ٠
 - Transportation, National Security, ... •
- However, (d/dt) (Spatial Data Volume) >> (d/dt) (Number of Human Analysts)
 - Need automated methods to mine patterns from spatial data
 - Need tools to amplify human capabilities to analyze spatial data •

Transportation Data Mining: Some Challenges

- Violates assumptions of classical data mining
 - Lack of independence among samples ? Decision trees, …
 - No natural transactions -? Association rule, ...
- Two kinds of spaces
 - Embedding space, e.g. Geography, Network, Time
 - Feature space, e.g. Traffic volume, accidents, ...
- Lessons from Spatial thinking
 - 1st Law: Auto-correlation: Nearby things are related
 - Heterogeneity
 - Edge effect
 - ...

(Geo) Informatics across Disciplines!

Example 1: Spatial Anomalies

- Example Sensor 9
 - Will sensor 9 be detected by traditional outlier detection ?
 - Is it a global outlier ?

Global vs. Spatial outliers (SIGKDD 2001)

Spatial outlier

A data point that is extreme relative to it neighbors

Given

A spatial graph G={V,E}

A neighbor relationship (K neighbors)

An attribute function f: V -> R

Test T for spatial outliers

Find

 $O = \{v_i \mid v_i \in V, v_i \text{ is a spatial outlier}\}$

Objective

Correctness, Computational efficiency

Constraints

Test T is an algebraic aggregate function

Average Traffic Volume(Time v.s. Station)

Spatial outlier detection

Spatial outlier and its neighbors

- 1. Choice of Spatial Statistic $S(x) = [f(x)-E_{y \in N(x)}(f(y))]$ Theorem: S(x) is normally distributed if f(x) is normally distributed
- 2. Test for Outlier Detection

 $| (S(x) - \mu_s) / \sigma_s | > \theta$

Spatial/Spatio-temporal Outliers Challenges

What is it?

- Location different from their neighbors
 - Discontinuities, flow anomalies
- Solved
 - Transient spatial outliers
- Almost solved
 - Anomalous trajectories
- Failed
- Missing
 - Persistent anomalies
 - Multiple object types, Scale
- Next
 - Dominant Persistent Anomalies

Example 2: Hotspots

• Is classical clustering (e.g. K-mean) effective?

HotSpots

- What is it?
 - Unusally high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis
- Solved
 - Spatial statistics based ellipsoids
- Almost solved
 - Transportation network based hotspots
- Failed
 - Classical clustering methods, e.g. K-means
- Missing
 - Spatio-temporal
- Next
 - Emerging hot-spots

Network Semantics: Implicit Routes

- Complicated Feature
 - Urban environment
 - Transportation Networks
- Patterns
 - Journey to crime
 - Network based explanation

(a) Input: Pink lines connect crime location & criminal's residence

(b) Output: Journey- to-Crime (thickness = route popularity) Source: Crimestat

Example 3b: Associations

Given a set of tracks of different types, can association mining find subset of ٠ types that often move together?

• Manpack stinger (2 Objects)

- M1A1_tank (3 Objects)
- M2_IFV (3 Objects)
- Field_Marker (6 Objects)
- T80_tank

(2 Objects)

BRDM_AT5 (enemy) (1 Obje

Co-occurring object-types

Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

M2_IFV (3 Objects)

• Field_Marker (6 Objects)

• T80_tank (2 Objects)

BRDM_AT5 (enemy) (1 Object)

• BMP1 (1 Object)

Challenge: Continuity

• Association rule e.g. (Diaper in T => Beer in T)

Transaction	Items Bought		
1	{socks, 🚃 , milk, 🍵 beef, egg, …}		
2	{pillow, [] toothbrush, ice-cream, muffin,}		
3	{ 📰 , 📋, pacifier, formula, blanket, …}		
n	{battery, juice, beef, egg, chicken,}		

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2
- Algorithm Apriori [Agarwal, Srikant, VLDB94]
 - Support based pruning using monotonicity
- Note: Transaction is a core concept!

Co-location Patterns (SSTD 2001, TKDE 2004)

	Association rules	Colocation rules
underlying space	discrete sets	continuous space
item-types	item-types	events /Boolean spatial features
collections	Transactions	neighborhoods
prevalence measure	support	participation index
conditional probability measure	Pr.[A in T B in T]	Pr.[A in N(L) B at L]

Challenges:

1. Computational Scalability

Needs a large number of spatial join, 1 per candidate colocation

2. Spatial Statistical Interpretation

Related to Ripley's K-function in Spatial Statistics

- - -

Spatio-temporal Association: Cascade Patterns

- Time Geography theory
 - Processes = a collection of events
 - Events
 - Have specific endpoint
 - (Partially) ordered by time-footprints
- Instance level model
 - Nodes = instances of events
 - Edges = spatio-temporal neighbors
 - Direction defined by time-footprints
- Cascade Patterns = Schema-level summary
 - Nodes = Event-types (ET)
 - Edge(ET1, ET2, N) =>N compatible edges at instance level
 - Cycles are possible, e.g. ST overlapping processes
- Similar to Graphical Models, Bayesian Networks, Graph mining...
 - Simpler interest measure, e.g. Pr(Pattern P | an event instance)
 - Cheaper than joint probability distribution, max. independent set
 - Computationally more scalable

Colocation, Co-occurrence, Intera

What is it?

- Subset of event types, whose instances occur together
- Ex. Symbiosis, (bar, misdemeanors), ...
- Solved
 - Colocation of point event-types
- Almost solved
 - Co-location of extended (e.g.linear) objects
 - Object-types that move together
- Failed
 - Neighbor-unaware Transaction based approaches
- Missing
 - Consideration of flow, richer interactions
- Next
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections

Example 4: Spatio-temporal Prediction

- Transportation Planning
 - What will be the impact of a new office building?
 - What will be travel demand? future bottlenecks?
 - What will be the effect of hybrid cars on traffic?
 - How will better bicycle facility impact vehicle traffic?
- Q? Are classical techniques (e.g. Decision trees, SVM, ...) adequate?
- Challenges
 - Spatio-temporal auto-correlation violates independence assumption
 - Network : routes, edge capacities, ...
 - Individual behavior: urban sprawl?
 - Group dynamics: game theory, Wardrop equilibrium, ...

Autocorrelation

- First Law of Geography
 - "All things are related, but nearby things are more related than distant things. [Tobler, 1970]"

Pixel property with independent identical distribution

- Autocorrelation
 - Traditional i.i.d. assumption is not valid
 - Measures: K-function, Moran's I, Variogram, ...

Vegetation Durability with SA

Challenge 1: Is I.I.D. assumption valid?

0

Nest locations

Vegetation distribution across the marshland

Vegetation durability

Water depth variation across marshland

Water depth

Implication of Auto-correlation

Name	Model	Classification Accuracy
Classical Linear Regression	$\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$	Low
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	High

 ρ : the spatial auto - regression (auto - correlatio n) parameter W: *n* - by - *n* neighborho od matrix over spatial framework

Computational Challenge:

Computing determinant of a very large matrix in the Maximum Likelihood Function:

$$\ln(L) = \frac{\ln|\mathbf{I} - \rho \mathbf{W}|}{2} - \frac{n\ln(2\pi)}{2} - \frac{n\ln(\sigma^2)}{2} - SSE$$

Research Needs in Location Prediction

- Additional Problems
 - Estimate W for SAR and MRF-BC
 - Scaling issue in SAR
 - Scale difference: $\rho Wy vs. X\beta$
 - Spatial error measure: e.g., avg, dist(actual, predicted)

Space/Time Prediction

- What is it?
 - Models to predict location, time, path, ...
 - Nest sites, minerals, earthquakes, tornadoes, ...
- Solved
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression
- Almost solved
 - Auto-correlation, e.g. spatial auto-regression
- Failed: Independence assumption
 - Models, e.g. Decision trees, linear regression, ...
 - Measures, e.g. total square error, precision, recall
- Missing
 - Spatio-temporal vector fields (e.g. flows, motion), physics
- Next
 - Scalable algorithms for parameter estimation
 - Distance based errors

$$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Outline

- Transportation domain
- A transportation dataset
- Data mining issues
 - Spatio-temporal networks
 - Spatial outliers
 - Hotspots
 - Co-occurrences
 - Location prediction
- Summary

Data Mining Challenges in Transportation

- Identify Limitations of Transportation Knowledge
 - Calibration of simulation parameters, e.g.
 - Day-time population distribution, traffic distribution
 - Non-equilibrium dynamics over space and time
 - Extreme events, e.g. evacuation, conventions, ...
- Articulate value of data mining (DM)
 - Value of novel data sets
 - Lab.-based vs. on-road emissions or mpg
 - Context weather, ambient temperature, vehicle to vehicle
 - Simulator estimated routes vs. gps-tracks
 - Volunteer information pot-holes, speed, ...
 - Value of novel data analysis or visualization techniques
 - anomalies
- Evaluate and evolve current DM
 - May current DM deliver value?
 - Are assumption of classical DM reasonable?
 - How can be improve current DM technique?

Data Mining and Transportation

- Potential value of data mining in transportation
 - Data driven discoveries to complement model driven ones
 - Hypothesis generation to complement hypothesis testing
 - Computational scalability
 - Conceptual scalability models of gps-tracks
 - Which problems ?
 - Extreme events, ...
- Potential value of transportation to data mining
 - Expose limitations, e.g. independence assumption
 - New challenges: e.g. spatio-temporal networks, ...
 - New pattern families