What is Special about

Mining Spatial Data in Human Health?

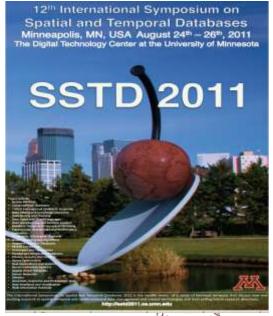
Shashi Shekhar

McKnight Distinguished University Professor Department of Computer Science and Engineering, University of Minnesota

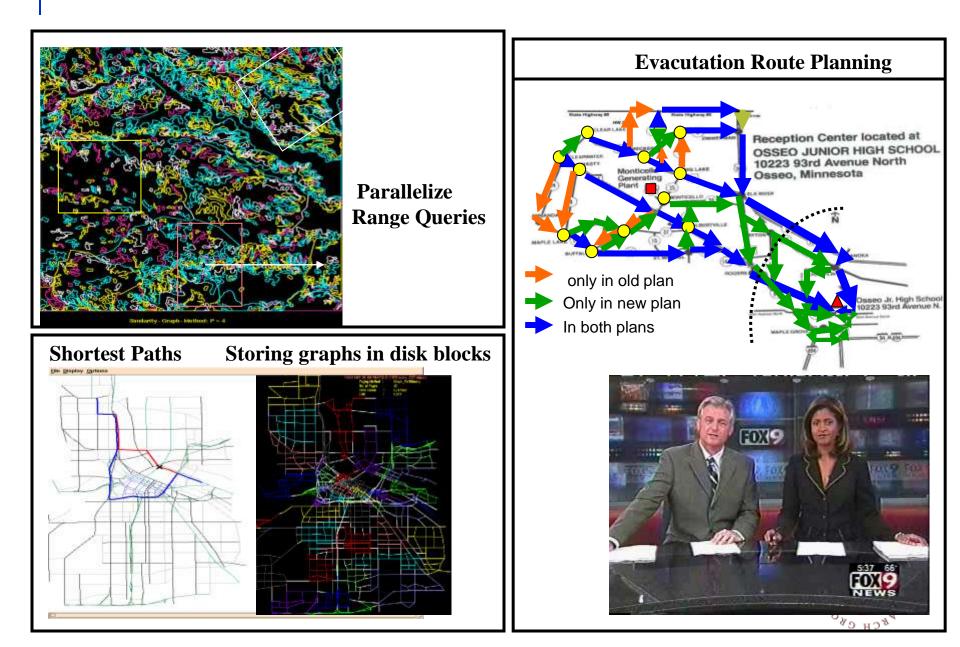
www.cs.umn.edu/~shekhar

For more details:

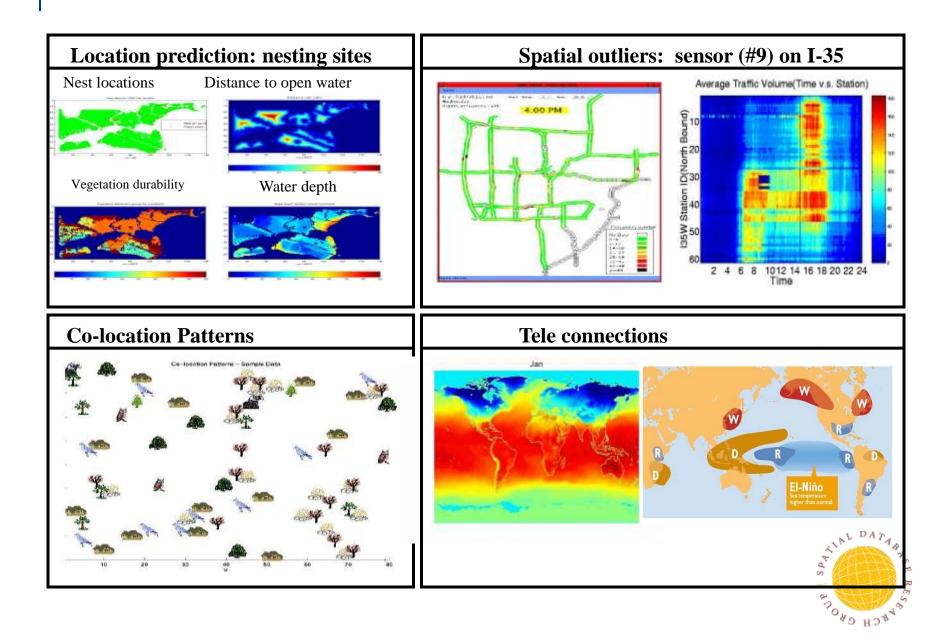
S. Shekhar et al., Identifying patterns in spatial information: A survey of Methods, Wiley Interdisciplinary Reviews in Data Mining and Knowledge Discovery, Volume 1, May/June 2011.



Research Theme 1: Spatial Databases



Theme 2 : Spatial Data Mining

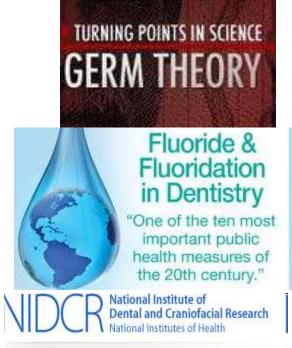


Data Mining Questions

- Public Health, Public Safety, National Security
 - What are the hotspots of an infectious disease, crime, insurgency? Why?
 - What are emerging hotspots? Which way will it spread? Where did it originate?
- What are critical places (sources) and paths(transportation routes) ?
- What are spatio-temporal patterns of life (for a person or a disease) ?
- Is current spatio-temporal pattern of a disease anomalous?
- Which spatio-temporal event-types (e.g., diseases) co-locate (or co-occur)?
- Climate, Environment, Impact on Health (e.g., Exposome)
- How is the climate changing? How does impact Exposome? Gene-Environment interactions?
- How does it change pathogens, pathogen carriers, disease rates and locations?
- What are the consequences of changes in the Earth system for human health?
- How well can we predict future changes?
- What actions may reduce adverse impacts on human health?

Exploratory Data Analysis and Health

- Exploratory Spatial Analysis
 - Help generate hypothesis
 - Location bring in rich context to prioritize hypothesis
- Examples of Hypothesis Generation via Data Mining
 - London Cholera Map (J. Snow, 1854)
 - \rightarrow Caused by water rather than bad air (miasma theory)
 - $\rightarrow \text{Germ Theory}$
 - Colorado flourosis (1905) \rightarrow water causation (1923)
 - → Bauxite? Flouride? → 1% prevent carries (1930)
 → public policy (1948) ...
 - Functional Genomics is a data mining problem!
 - Exposomics
 - Exposomics is a spatial data mining problem!
 - > Q: Which exposure strengthens Immune system ?
 - Notes:
 - "... whereas structural genomics has been characterized by data management, functional genomics will be characterized by mining the data sets for particularly valuable information.", Functional Genomics: It's All How You Read It, Philip Hieter and Mark Boguski, AAAS Science, 278, 14th October 1997.
 - More on Exposomics at <u>www.cdc.gov/niosh/topics/exposome/</u>



mproving the Nation's Oral Health

Why Data Mining?

Holy Grail - Informed Decision Making

- Lots of Data are Being Collected
 - Business Transactions, Web logs, GPS-track, ...
 - Science Remote sensing, Micro-array gene expression data, ...
 - Challenges:
 - Volume (data) >> number of human analysts
 - Some automation needed
- Data Mining may help!
 - Provide better and customized insights for business
 - Help scientists for hypothesis generation

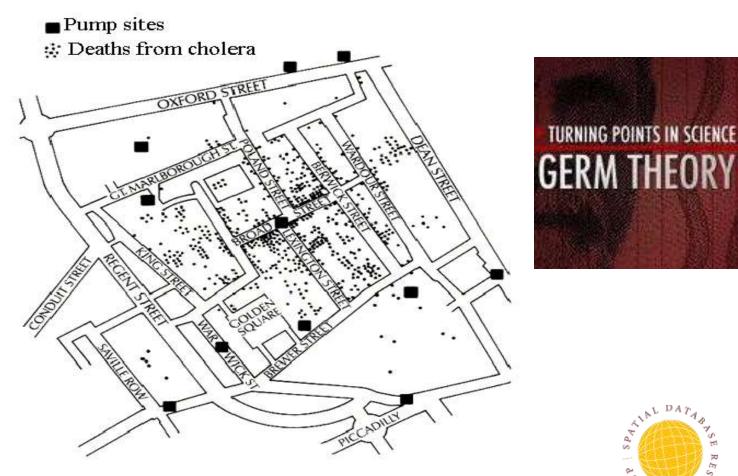
Spatial Data Mining (SDM)

- The process of discovering
 - interesting, useful, non-trivial patterns
 - > patterns: non-specialist
 - exception to patterns: specialist
 - from large spatial datasets
- Spatial pattern families
- 1. Hotspots, Spatial clusters
- 2. Spatial outlier, discontinuities
- 3. Co-locations, co-occurrences
- 4. Location prediction models
- 5. ...

Pattern Family 1: Hotspots, Spatial Cluster

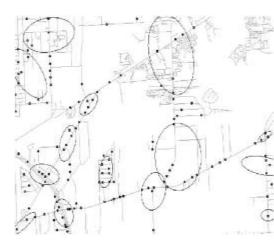
The 1854 Asiatic Cholera in London

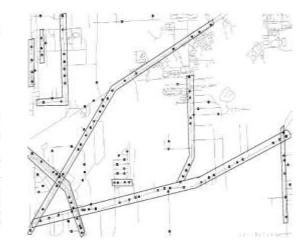
Near Broad St. water pump except a brewery

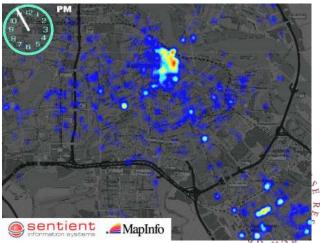


From Hotspots to Hot-routes & Mean Streets

- Challenges: Spatial Networks, Time
- Examples:
 - India Accelerating | An Epidemic Spreads, "On India's Roads, Cargo and a Deadly Passenger", NewYork Times, A. Waldman, December 6, 2005. Its national highways are a conduit for the virus, passed by prostitutes and the truckers, migrants and locals who pay them ...
 - Global transport networks and infectious disease spread, Adv Parasitol. 2006;62:293-343. (http://www.ncbi.nlm.nih.gov/pubmed/16647974)
- Q? How may one detect routes of disease spread?
 - Spatial Statistical methods identify ellipsiodal hotspots
 - Spatial data mining methods, e.g. K-Main Route, for hot-routes, mean streets

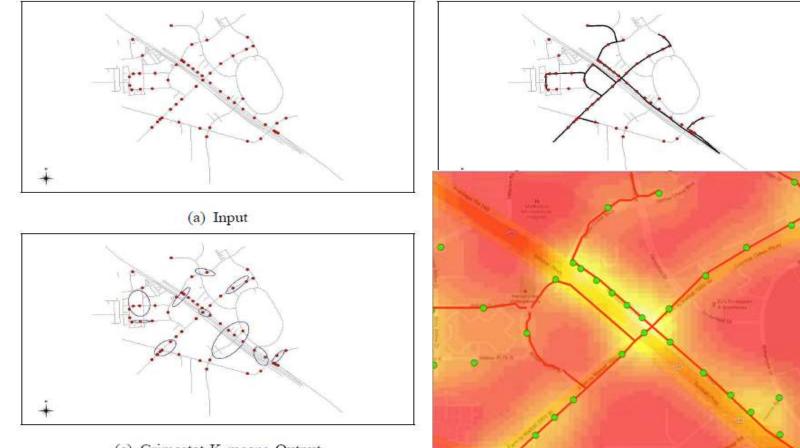






Innovative Technique: K Main Routes (KMR)

Summarizes Urban Activities



(c) Crimestat K-means Output

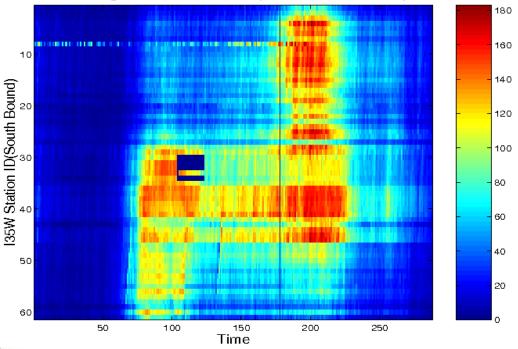
KMR Routes (10) – thick lines, Crimestat K-Means (10) – ellipses, Roads – gray lines, Burglaries - points

Pattern Family 2: Spatial Outliers

Spatial Outliers

- Traffic Data in Twin Cities
- Abnormal Sensor Detections
- Spatial and Temporal Outliers

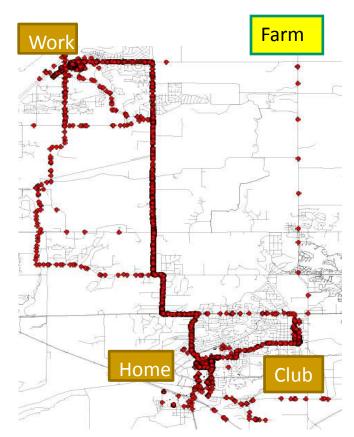
Average Traffic Volume(Time v.s. Station)



Patterns of Life

- Weekday GPS track of over 3 months
 - Patterns of life
 - Usual places and visits
 - Small return period
 - Rare places, Rare visits
 - Large Return period, e.g., once a month, once a quarter, once a year, …

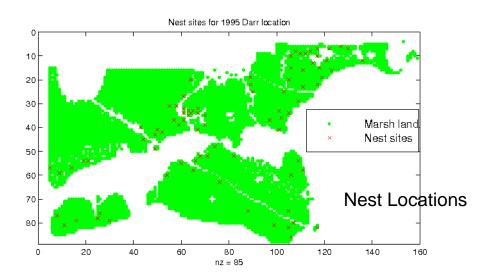
	Morning 7am – Noon	Afternoon Noon – 5pm	Evening 5pm – Midnight	Night Midnight – 7am	Total
Home	10	2	15	29	54
Work	19	20	10	1	50
Club	4	5	4		15
Farm			1		1
Total	30	30	30	30	120

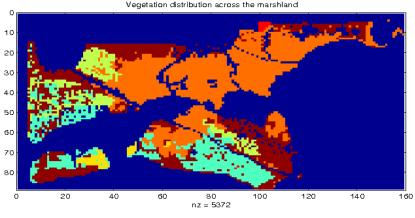


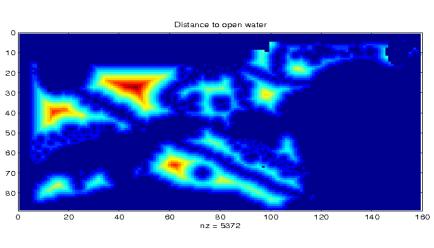
Pattern Family 3: Predictive Models

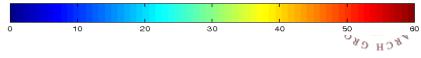
Location Prediction:

- Predict Bird Habitat Prediction
- Using environmental variables









Prediction and Trend

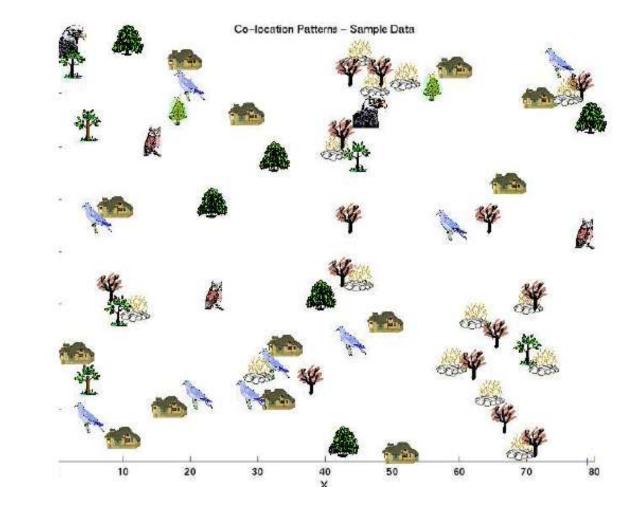
Prediction

- Continuous: trend, e.g., regression
 - Location aware: spatial autoregressive model (SAR)
- Discrete: classification, e.g., Bayesian classifier
 - Location aware: Markov random fields (MRF)

Classical	Spatial
$y = X\beta + \varepsilon$	$y = \rho W y + X \beta + \varepsilon$
$\Pr(C_i \mid X) = \frac{\Pr(X \mid C_i) \Pr(C_i)}{\Pr(X)}$	$\Pr(c_i \mid X, C_N) = \frac{\Pr(C_i) \Pr(X, C_N \mid c_i)}{\Pr(X, C_N)}$

Pattern Family 4: Co-locations/Co-occurrence

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types



Spatial Colocation

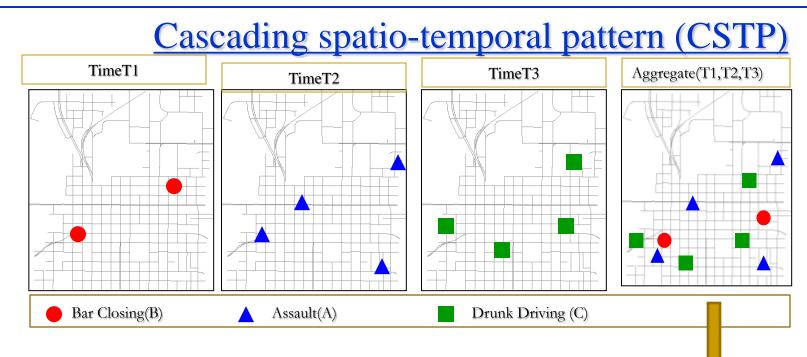
Participation ratio $pr(f_i, c)$ of feature f_i in colocation $c = \{f_1, f_2, ..., f_k\}$: fraction of instances of f_i with feature $\{f_1, ..., f_{i-1}, f_{i+1}, ..., f_k\}$ nearby (i.e. within a given distance)

Participation index PI(c) = min{ pr($f_i, c)$ }

Properties: (1) Computational: Non-monotonically decreasing like support measure (2) Statistical: Lower bound on Cross-K function

Comparison with K-function

	B.1 A.1	B.1 A.1	B.1 A.1	
	▲A.3	A.3	A.3	
	B.2 • A.2	B.2 A.2	B.2 A.2	
ST -K ($\mathbf{B} \rightarrow \mathbf{A}$)	2/6 = 0.33	3/6 = 0.5	6/6 = 1	NL DATAB
$\mathbf{PI} \ (\mathbf{B} \rightarrow \mathbf{A})$	2/3 = 0.66	1	1	SE RE
			3	POR CH CKO



□ Input: Urban Activity Reports

Output: CSTP

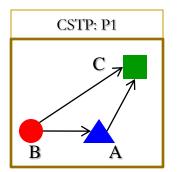
Dertially ordered subsets of ST event types.

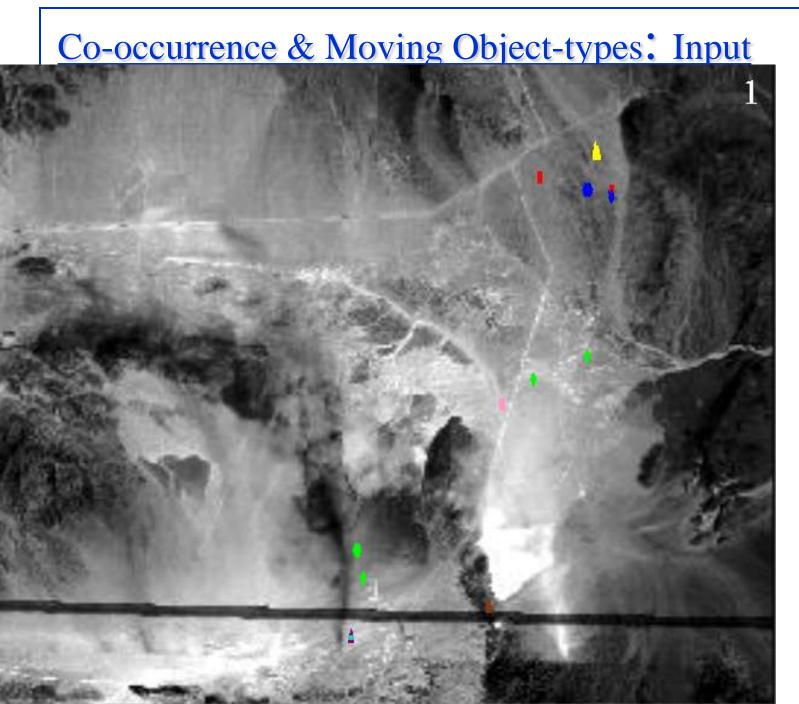
Located together in space.

Occur in *stages* over time.

□ Applications:

Epidemiology, Disaster Response, ...





• Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

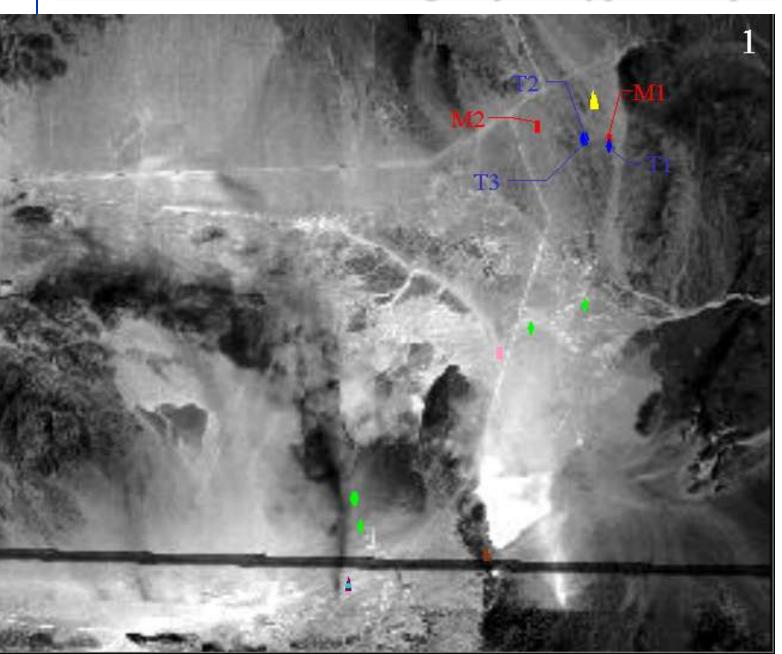
M2_IFV (3 Objects)

Field_Marker
 (6 Objects)

• T80_tank (2 Objects)

BRDM_AT5
(enemy)-(1,Object)
BMP1
(1 Object)¹

Co-occurrence & Moving Object-Types: Output



Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

- Field_Marker
 (6 Objects)
- T80_tank(2 Objects)

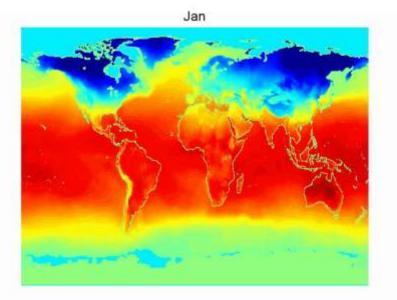
BRDM_AT5
(enemy)-(1,Object)
BMP1
(1 Object)¹

Teleconnection

Global Climate Change

Find (land location, ocean location) pairs with correlated climate changes

> Ex. El Nino affects climate at many land locations



Average Monthly Temperature (Courtsey: NASA, Prof. V. Kumar)

Global Influence of El Nino during the Northern Hemisphere Winter (D: Dry, W: Warm, R: Rainfall)

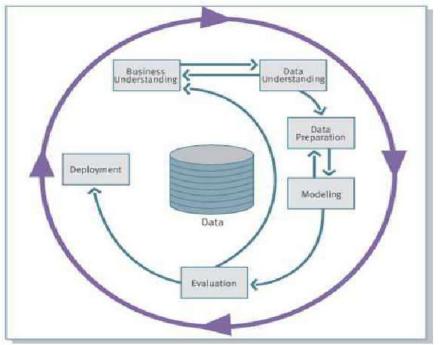
Teleconnection

Challenge

- high dimensional (e.g., 600) feature space
- 67k land locations and 100k ocean locations (degree by degree grid)
 - 50-year monthly data
- **Computational Efficiency**
 - Spatial autocorrelation
 - Reduce Computational Complexity
 - Spatial indexing to organize locations
 - > Top-down tree traversal is a strong filter
 - Spatial join query: filter-and-refine
 - > save 40% to 98% computational cost at $\theta = 0.3$ to 0.9

Life Cycle of Data Mining

- CRISP-DM (CRoss-Industry Standard Process for DM)
 - Application/Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment



Phases of CRISP-DM

Is CRISP-DM adequate for Spatial Data Mining?

[1] CRISP-DM URL: http://www.crisp-dm.org

