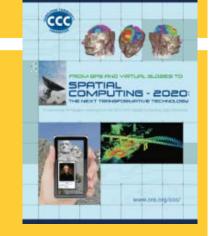
## What is special about mining spatial data?

#### Shashi Shekhar

McKnight Distinguished University Professor Dept. of Computer Sc. and Eng. University of Minnesota www.cs.umn.edu/~shekhar

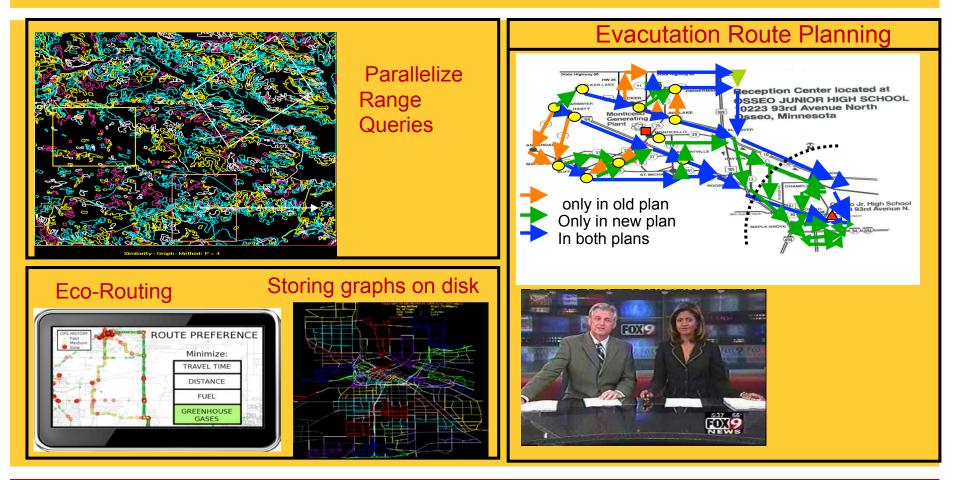




UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

#### Spatial Databases: Representative Projects

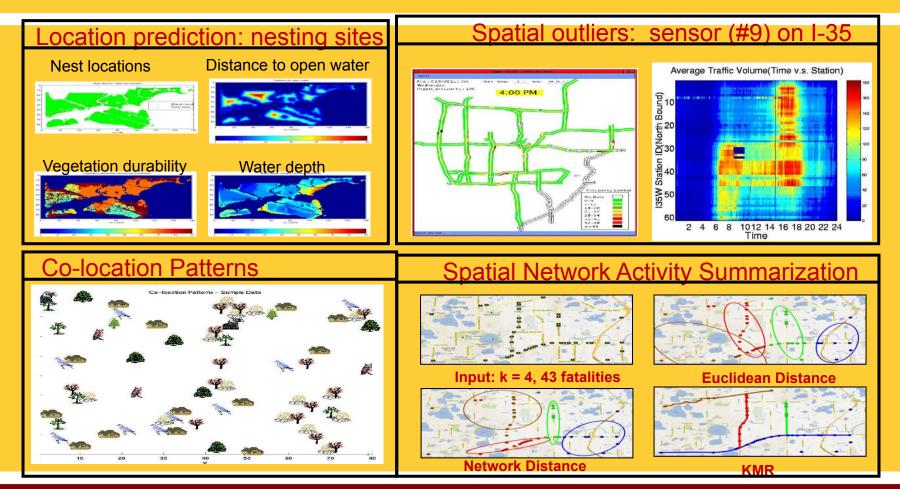
Details: Spatial Databases: Accomplishments and Research Needs, IEEE Transactions on Knowledge and Data Engineering, 11(1), 1999. (and recent update via a technical report)



UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Spatial Data Mining: Example Projects

Details: Identifying patterns in spatial information: a survey of methods, Wiley Interdisc. Reviews: Data Mining and Know. Discovery , 1(3):193-214, May/June 2011



UNIVERSITY OF MINNESOTA Driven to Discover<sup>554</sup>

### Outline

- Motivation
  - Use cases
  - Pattern families
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

# Why Data Mining?

- Holy Grail Informed Decision Making
- Sensors & Databases increased rate of Data Collection
  - Transactions, Web logs, GPS-track, Remote sensing, ...
- Challenges:
  - Volume (data) >> number of human analysts
  - Some automation needed
- Approaches
  - Database Querying, e.g., SQL3/OGIS
  - Data Mining for Patterns
  - ...

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

## Data Mining vs. Database Querying

- Database Querying (e.g., SQL3/OGIS)
  - Does not answer questions about items not in the database!
    - Ex. Predict tomorrow's weather or credit-worthiness of a new customer
  - Does not efficiently answer complex questions beyond joins
    - Ex. What are natural groups of customers?
    - Ex. Which subsets of items are bought together?
- Data Mining may help with above questions!
  - Prediction Models
  - Clustering, Associations, ...

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

# Spatial Data Mining (SDM)

#### The process of discovering

- interesting, useful, non-trivial patterns
  - patterns: non-specialist
  - exception to patterns: specialist
- from large spatial datasets

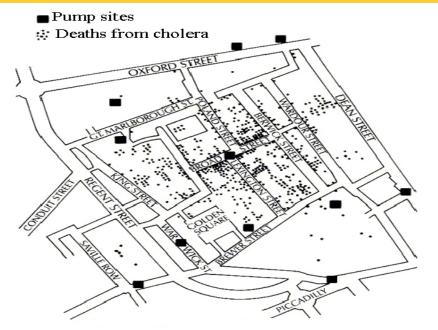
#### Spatial pattern families

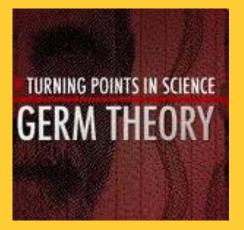
- Hotspots, Spatial clusters
- Spatial outlier, discontinuities
- Co-locations, co-occurrences
- Location prediction models

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### Pattern Family 1: Hotspots, Spatial Cluster

- The 1854 Asiatic Cholera in London
  - Near Broad St. water pump except a brewery

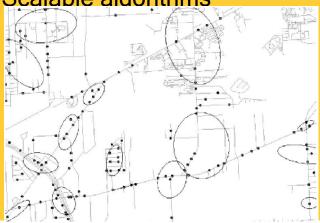


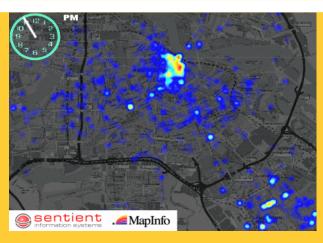


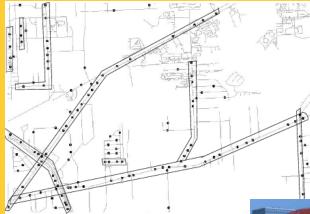
UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **Complicated Hotspots**

- Complication Dimensions
  - Time
  - Spatial Networks
- Challenges: Trade-off b/w
  - Semantic richness and
  - Scalable algorithms





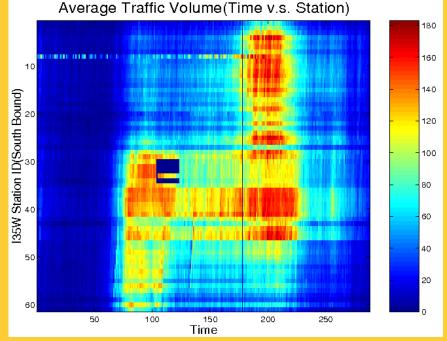


UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Pattern Family 2: Spatial Outliers

- Spatial Outliers, Anomalies, Discontinuities
  - Traffic Data in Twin Cities
  - Abnormal Sensor Detections
  - Spatial and Temporal Outliers



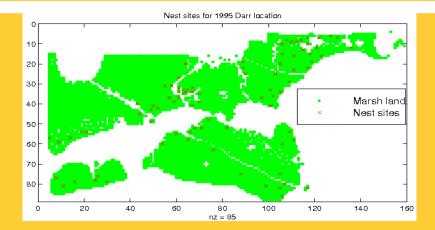


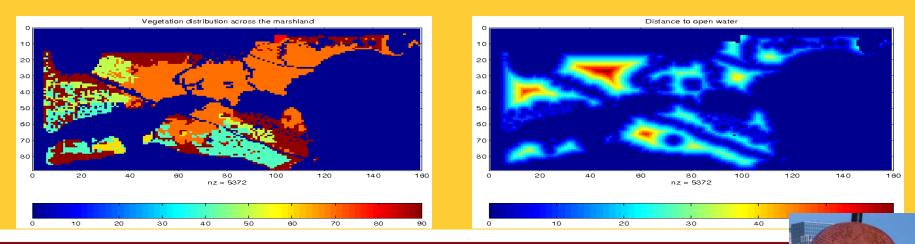
Source: A Unified Approach to Detecting Spatial Outliers, GeoInformatica, 7(2), Springer, June 2003. (A Summary in Proc. ACM SIGKDD 2001) with C.-T. Lu, P. Zhang.

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Pattern Family 3: Predictive Models

- Location Prediction:
  - Predict Bird Habitat Prediction
  - Using environmental variables

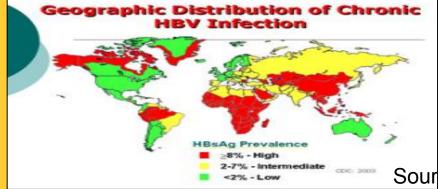


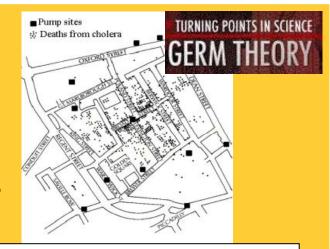


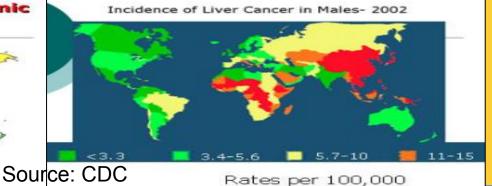
UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Family 4: Co-location, Co-occurrence

- Co-location (Cholera Deaths, Water Pump)
  - Hypothesis: Cholera is water-borne (1854)
  - Miasama theory => Germ Theory
- Co-location (Liver Cancer, HBV infection)
- Which exposures and cancers are co-located?
  - Challenge: Large number of candidate pairs!





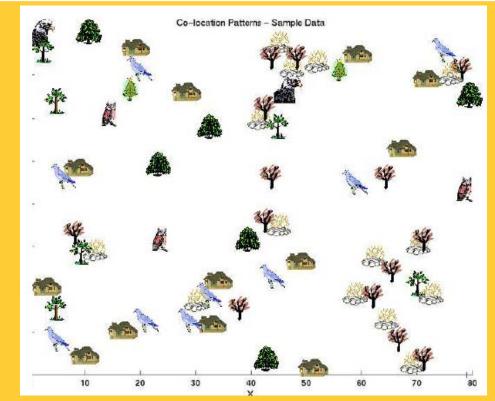


UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

#### Family 4: Co-locations/Co-occurrence

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types





<u>Source</u>: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

# What's NOT Spatial Data Mining (SDM)

- Simple Querying of Spatial Data
  - Find neighbors of Canada, or shortest path from Boston to Houston
- Testing a hypothesis via a primary data analysis
  - Ex. Is cancer rate inside Hinkley, CA higher than outside ?
  - SDM: Which places have significantly higher cancer rates?
- Uninteresting, obvious or well-known patterns
  - Ex. (Warmer winter in St. Paul, MN) => (warmer winter in Minneapolis, MN)
  - SDM: (Pacific warming, e.g. El Nino) => (warmer winter in Minneapolis, MN)
- Non-spatial data or pattern
  - Ex. Diaper and beer sales are correlated
  - SDM: Diaper and beer sales are correlated in blue-collar areas (weekday evening)

UNIVERSITY OF MINNESOTA Driven to Discover<sup>34</sup>

#### **Review Quiz: Spatial Data Mining**

- Categorize following into queries, hotspots, spatial outlier, colocation, location prediction:
  - (a) Which countries are very different from their neighbors?
  - (b) Which highway-stretches have abnormally high accident rates ?
  - (c) Forecast landfall location for a Hurricane brewing over an ocean?
  - (d) Which retail-store-types often co-locate in shopping malls?
  - (e) What is the distance between Beijing and Chicago?

UNIVERSITY OF MINNESOTA Driven to Discover<sup>354</sup>

### Outline

- Motivation
- Spatial Data
  - Spatial Data Types & Relationships
  - OGIS Simple Feature Types
- Spatial Statistical Foundations
- Spatial Data Mining
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>™</sup>

#### Data-Types: Non-Spatial vs. Spatial

- Non-spatial
  - Numbers, text-string, ...
  - e.g., city name, population
- Spatial (Geographically referenced)
  - Location, e.g., longitude, latitude, elevation
  - Neighborhood and extent
- Spatial Data-types
  - Raster: gridded space
  - Vector: point, line, polygon, ...
  - Graph: node, edge, path



Raster (Courtesy: UMN)



Vector (Courtesy: MapQuest)

#### UNIVERSITY OF MINNESOTA Driven to Discover™

### **Relationships: Non-spatial vs. Spatial**

#### Non-spatial Relationships

- Explicitly stored in a database
- Ex. New Delhi is the capital of India

#### Spatial Relationships

- Implicit, computed on demand
- Topological: meet, within, overlap, ...
- Directional: North, NE, left, above, behind, ...
- Metric: distance, area, perimeter
- Focal: slope
- Zonal: highest point in a country
- .

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **OGC Simple Features**

- Open GIS Consortium: Simple Feature Types
  - Vector data types: e.g. point, line, polygons
  - Spatial operations :

| Operator Type              | Operator Name                                                                 |
|----------------------------|-------------------------------------------------------------------------------|
| Basic Function             | SpatialReference, Envelope,<br>Boundary, Export,<br>IsEmpty, IsSimple         |
| Topological/Set Operations | Equal, Disjoint, Intersect, Touch,<br>Cross, Within, Contains, Overlap        |
| Spatial Analysis           | Distance, Buffer, ConvexHull,<br>Intersection, Union, Difference,<br>SymmDiff |

Examples of Operations in OGC Model

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### **OGIS - Topological Operations**

- Topology: 9-intersections
  - interior
  - boundary
  - exterior

Interior(B)Boundary(B)Exterior(B) $(A^{\circ} \cap B^{\circ}) (A^{\circ} \cap \partial B) (A^{\circ} \cap B^{-})$ Interior(A) $(\partial A \cap B^{\circ}) (\partial A \cap \partial B) (\partial A \cap B^{-})$ Boundary(A) $(A^{-} \cap B^{\circ}) (A^{-} \cap \partial B) (A^{-} \cap B^{-})$ Exterior(A)

| Topological<br>Relationship |                                 |                                                                             |                                                                                                         |                                                                                                      |
|-----------------------------|---------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 9-intersection<br>model     | disjoint<br>(001<br>001<br>111) | $meet \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ | $ \begin{array}{c} \text{overlap}\\ \begin{pmatrix} 1 \ 1 \ 1\\ 1 \ 1 \ 1\\ 1 \ 1 \ 1\\ \end{pmatrix} $ | $ \begin{array}{c} \text{equal} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} $ |

UNIVERSITY OF MINNESOTA Driven to Discover™

#### **Research Needs for Data**

- Limitations of OGC Model
  - Direction predicates e.g. absolute, ego-centric
  - 3D and visibility, Network analysis, Raster operations
  - Spatio-temporal
- Needs for New Standards & Research
  - Modeling richer spatial properties listed above
  - Spatio-temporal data, e.g., moving objects

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

### Outline

- Motivation
- Spatial Data Types
- Spatial Statistical Foundations
  - Spatial Auto-correlation
  - Heterogeneity
  - Edge Effect
- Spatial Data Mining
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>54</sup>

## **Limitations of Traditional Statistics**

- Classical Statistics
  - Data samples: independent and identically distributed (i.i.d)
  - Simplifies mathematics underlying statistical methods, e.g., Linear Regression
- Spatial data samples are not independent
  - Spatial Autocorrelation metrics
    - distance-based (e.g., K-function), neighbor-based (e.g., Moran's I)
  - Spatial Cross-Correlation metrics
- Spatial Heterogeneity
  - Spatial data samples may not be identically distributed!
  - No two places on Earth are exactly alike!

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

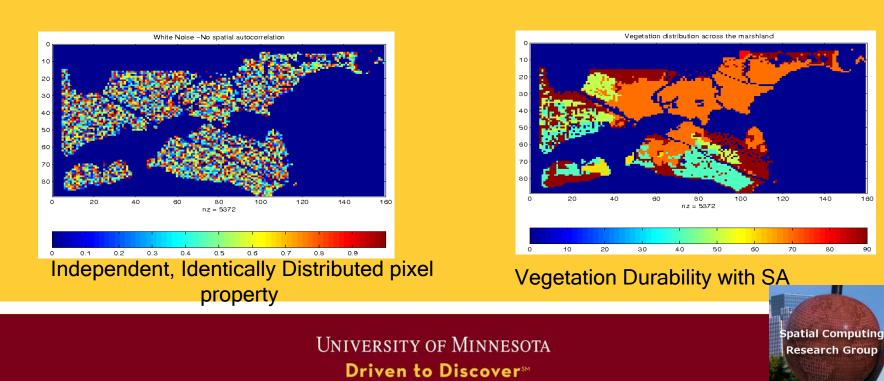
#### **Spatial Statistics: An Overview**

- Point process
  - Discrete points, e.g., locations of trees, accidents, crimes, ...
  - Complete spatial randomness (CSR): Poisson process in space
  - K-function: test of CSR
- Geostatistics
  - Continuous phenomena, e.g., rainfall, snow depth, ...
  - Methods: Variogram measure how similarity decreases with distance
  - Spatial interpolation, e.g., Kriging
- Lattice-based statistics
  - Polygonal aggregate data, e.g., census, disease rates, pixels in a raster
  - Spatial Gaussian models, Markov Random Fields, Spatial Autoregressive Model

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

## **Spatial Autocorrelation (SA)**

- First Law of Geography
  - All things are related, but nearby things are more related than distant things. [Tobler70]
- Spatial autocorrelation
  - Traditional i.i.d. assumption is not valid
  - Measures: K-function, Moran's I, Variogram, ...

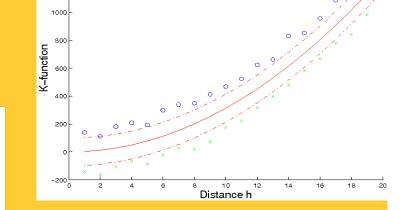


## **Spatial Autocorrelation: K-Function**

- Purpose: Compare a point dataset with a complete spatial random (CSR) data
- Input: A set of points  $K(h, data) = \lambda^{-1} E$  [number of events within distance *h* of an arbitrary event]
  - where  $\lambda$  is intensity of event
- Interpretation: Compare k(h, data) with *K(h,* CSR)
  - K(h, data) = k(h, CSR): Points are CSR

> means Points are clustered

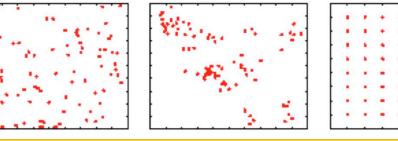
< means Points are de-clustered



Poisson CSR Cluster Process

1200

Decluster Process



Clustered

CSR

De-clustered

UNIVERSITY OF MINNESOTA Driven to Discover<sup>554</sup>

#### **Cross-Correlation**

#### Cross K-Function Definition

 $K_{ij}(h) = \lambda_j^{-1} E$  [number of type *j* event within distance *h* of a randomly chosen type *i* event]

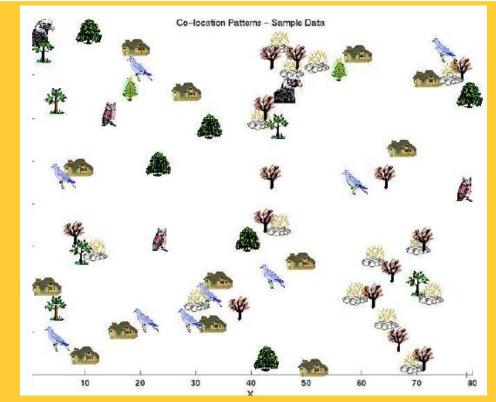
- Cross K-function of some pair of spatial feature types
- Example
  - Which pairs are frequently co-located
  - Statistical significance

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **Recall Pattern Family 4: Co-locations**

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types



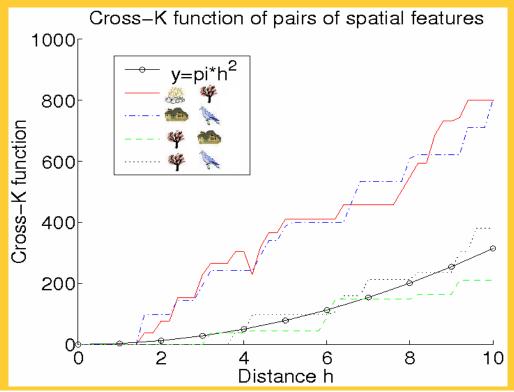


Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### **Illustration of Cross-Correlation**

Illustration of Cross K-function for Example Data

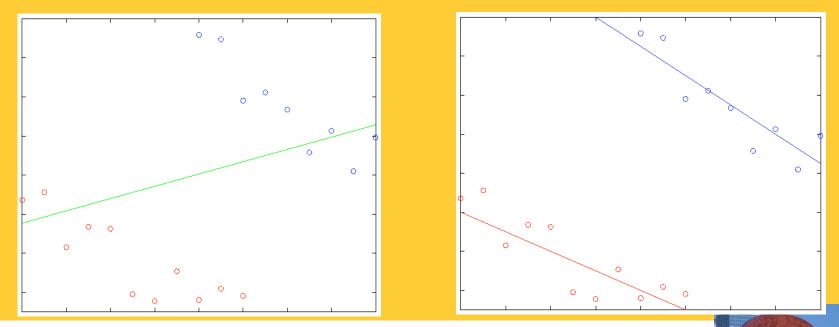


Cross-K Function for Example Data

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### **Spatial Heterogeneity**

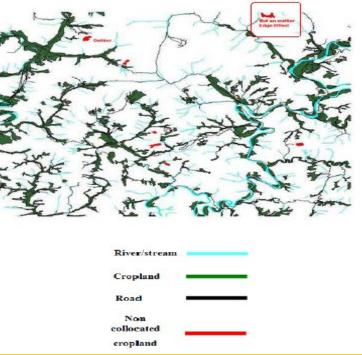
- "Second law of geography" [M. Goodchild, UCGIS 2003]
- Global model might be inconsistent with regional models
  - Spatial Simpson's Paradox
- May improve the effectiveness of SDM, show support regions of a pattern



UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### Edge Effect

- Cropland on edges may not be classified as outliers
- No concept of spatial edges in classical data mining



Korea Dataset, Courtesy: Architecture Technology Corporation

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

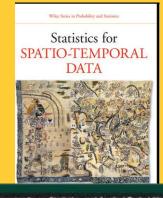
### **Research Challenges of Spatial Statistics**

#### State-of-the-art of Spatial Statistics

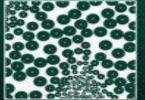
|        |         | Point<br>Process | Lattice      | Geostatistics |
|--------|---------|------------------|--------------|---------------|
|        | raster  |                  | $\checkmark$ | $\checkmark$  |
| Vector | Point   | $\checkmark$     | $\checkmark$ | $\checkmark$  |
|        | Line    |                  |              | $\checkmark$  |
|        | Polygon |                  | $\checkmark$ | $\checkmark$  |
| graph  |         |                  |              |               |

Data Types and Statistical Models

- Research Needs
  - Correlating extended features, road, rivers, cropland
  - Spatio-temporal statistics
  - Spatial graphs, e.g., reports with street address







Bårbel Finkenstådt Leonhard Held Valerie Isham

Chapman & Hall/CR

Spatial Computing Research Group

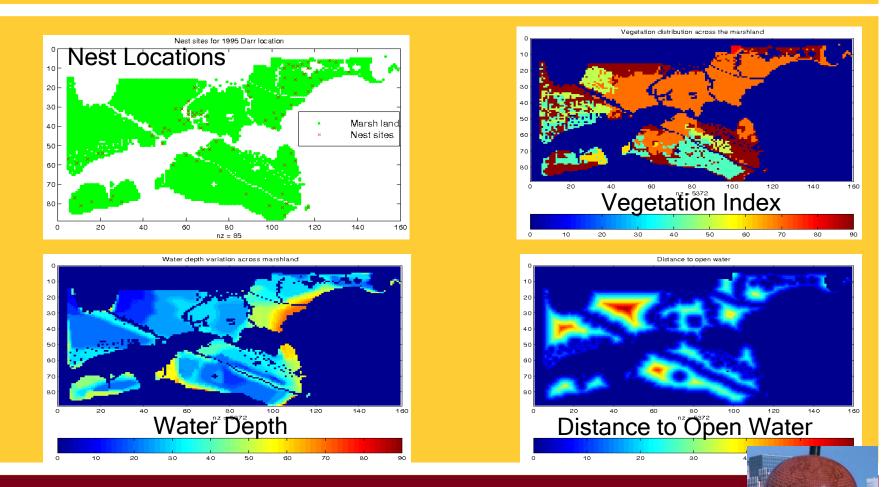
UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Outline

- Motivation
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
  - Location Prediction
  - Hotspots
  - Spatial Outliers
  - Colocations
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **Illustration of Location Prediction Problem**



UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **Decision Tree**

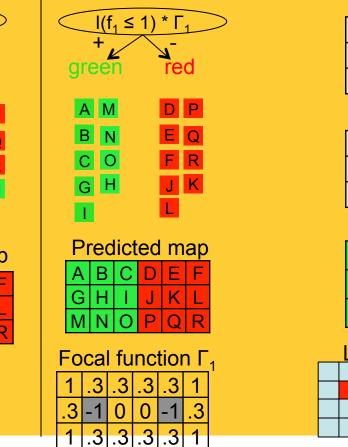
#### Inputs: table of records Output: Decision Tree

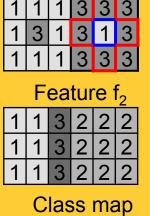
#### vs. Spatial Decision Tree

Inputs: feature n class maps, (rook) neighborhood Output: Spatial Decision Tree

| ID     | f <sub>1</sub> | f <sub>2</sub>             | class |
|--------|----------------|----------------------------|-------|
| Α      | 1              | 1                          | green |
| В      | 1              | 1                          | green |
| C<br>G | 1              | 3                          | green |
| G      | 1              | 1                          | green |
|        | 1              | 3<br>2                     | green |
| Κ      | 1              | 2                          | red   |
| М      | 1              | 1                          | green |
| Ν      | 1              | 1                          | green |
| 0      | 1              | 1<br>3                     | green |
| D      | 3              | 2                          | red   |
| Е      | 3              | 2<br>2                     | red   |
| F      | 3              | 2                          | red   |
| Н      | 3              | 1                          | green |
| J      | 3<br>3<br>3    | 2                          | red   |
| L      | 3              | 1<br>2<br>2<br>2<br>2<br>2 | red   |
| Ρ      | 3              | 2                          | red   |
| Q      | 3<br>3<br>3    | 2                          | red   |
| R      | 3              | 2                          | red   |

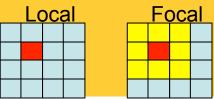
| + <u>L</u> | ≤ 1)<br>- |
|------------|-----------|
| green      | red       |
| AM         | DP        |
| B N        | EQ        |
| CO         | FR        |
| GK         | JH        |
|            |           |
| Predicte   | ed map    |
| ABC        | D E F     |
| GHI        | JKL       |
| MNO        | PQR       |
|            |           |
|            |           |
|            |           |





Feature f<sub>1</sub>

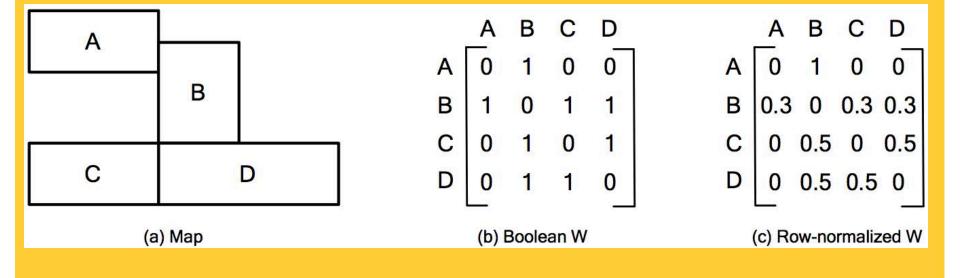




| feature test       | information gain |
|--------------------|------------------|
| f <sub>1</sub> ≤ 1 | 0.50             |
| f <sub>2</sub> ≤ 1 | 0.46             |
| f <sub>2</sub> ≤ 2 | 0.19             |

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### Neighbor Relationship: W Matrix





#### **Location Prediction Models**

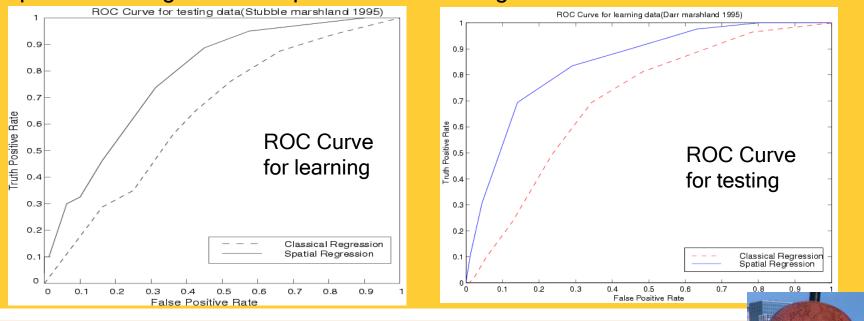
- Traditional Models, e.g., Regression (with Logit or Probit),
  - Bayes Classifier, ...
- Spatial Models
  - Spatial autoregressive model (SAR)
  - Markov random field (MRF) based Bayesian Classifier

ClassicalSpatial
$$y = X\beta + \varepsilon$$
 $y = \rho W y + X\beta + \varepsilon$  $Pr(C_i | X) = \frac{Pr(X | C_i) Pr(C_i)}{Pr(X)}$  $Pr(c_i | X, C_N) = \frac{Pr(C_i) Pr(X, C_N | c_i)}{Pr(X, C_N)}$ 

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

#### **Comparing Traditional and Spatial Models**

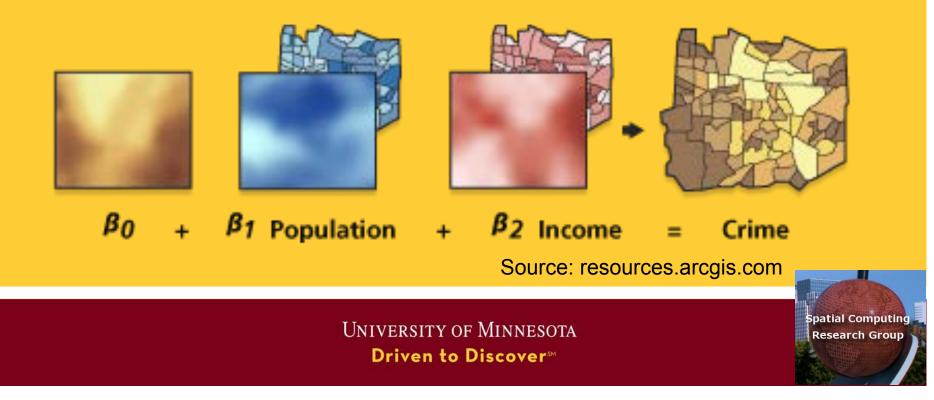
- Dataset: Bird Nest prediction
- Linear Regression
  - Lower prediction accuracy, coefficient of determination,
  - Residual error with spatial auto-correlation
- Spatial Auto-regression outperformed linear regression



UNIVERSITY OF MINNESOTA Driven to Discover<sup>54</sup>

# Modeling Spatial Heterogeneity: GWR

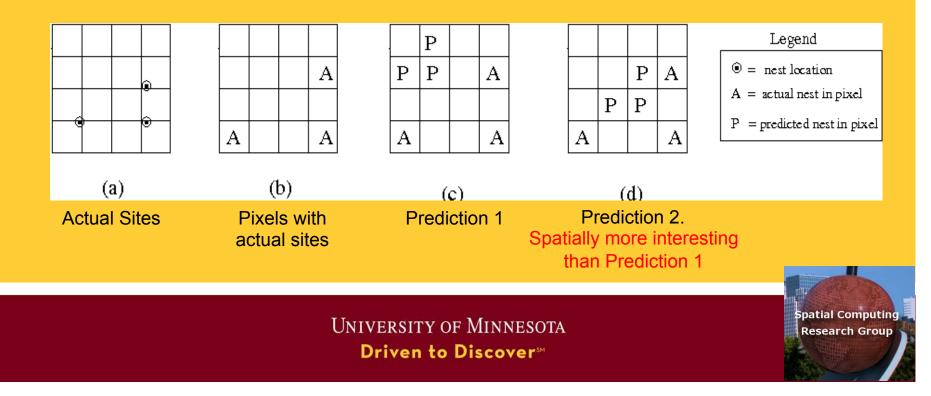
- Geographically Weighted Regression (GWR)
  - Goal: Model spatially varying relationships
  - Example:  $y = X\beta' + \varepsilon'$ Where  $\beta'$  and  $\varepsilon'$  are location dependent



### **Research Needs for Location Prediction**

#### • Spatial Auto-Regression

- Estimate W
- Scaling issue  $\rho Wy vs. X\beta$
- Spatial interest measure
  - e.g., distance(actual, predicted)



## Outline

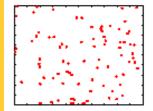
- Motivation
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
  - Location Prediction
  - Hotspots
  - Spatial Outliers
  - Colocations
- Conclusions

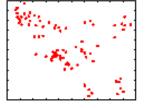
UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

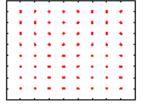
#### **Limitations of K-Means**

K-Means does test Statistical Significance

Finds chance clusters in complete spatial randomness (CSR)







Classical Clustering

Spatial Clustering





Satscan" Software for the spatial temporal, and space-time scan statisfics

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

# Spatial Scan Statistics (SatScan)

- Goal: Omit chance clusters
- Ideas: Likelihood Ratio, Statistical Significance

#### Steps

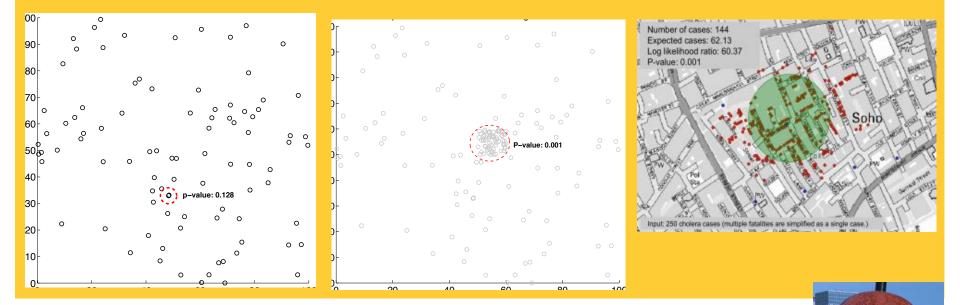
- Enumerate candidate zones & choose zone X with highest likelihood ratio (LR)
  - LR(X) = p(H1|data) / p(H0|data)
  - H0: points in zone X show complete spatial randomness (CSR)
  - H1: points in zone X are clustered
- If LR(Z) >> 1 then test statistical significance
  - Check how often is LR( CSR ) > LR(Z) using 1000 Monte Carlo simulations

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### SatScan Examples

Complete Spatial Randomness Output: No hotspots ! Highest LR circle p-value = 0.128 Data with a hotspot Output: A hotspot! p-value = 0.001

1854 London Cholera Output: A hotspot! p-value = 0.001

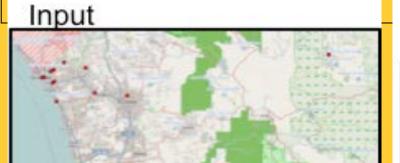


UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

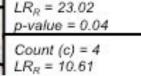
#### **Complex Hotspots**

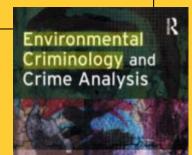
Semantic Gap between Spatial and Machine Learning

- Environmental Criminology
  - Routine Activities Theory, Crime Pattern Theory, Doughnut Hole pattern
- Formulation: rings, where inside density is significantly higher than outside ...









| Mathematics                              | Concepts                                        | Relationships                                                                                                              |
|------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Sets                                     | Set Theory                                      | Member, set-union, set-difference,                                                                                         |
| Vector Space                             | Linear Algebra                                  | Matrix & vector operations                                                                                                 |
| Euclidean Spaces                         | Geometry                                        | Circle, Ring, Polygon, Line_String, Convex hull,                                                                           |
| Boundaries,<br>Graphs,<br>Spatial Graphs | Topology,<br>Graph Theory,<br>Spatial graphs, … | Interior, boundary, Neighbor, inside, surrounds,,<br>Nodes, edges, paths, trees,<br>Path with turns, dynamic segmentation, |

Source: Ring-Shaped Hotspot Detection: A Summary of Results, IEEE ICDM 2014 (w/ E. Eftelioglu et al.

## Spatial-Concept/Theory-Aware Clusters

- Spatial Theories, e.g., environmental criminology
  - Circles 

    Doughnut holes
- Geographic features, e.g., rivers, streams, roads, ...
  - Hot-spots => Hot Geographic-features



(a) Input

(b) Crimestat K-means with Eu- (c) Crimestat K-means clidean Distance



Network Distance

with



(d) KMR

Source: A K-Main Routes Approach to Spatial Network Activity Summarization, IEEE Transactions on Knowledge and Data Eng., 26(6), 2014.)

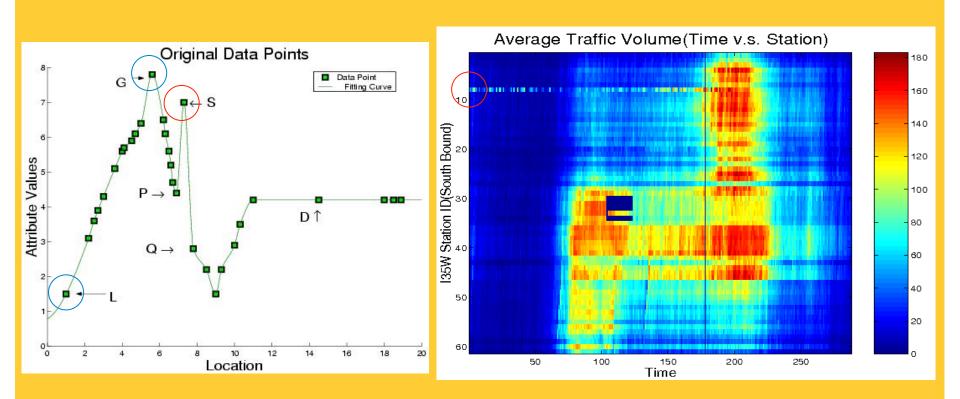
> UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

## Outline

- Motivation
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
  - Location Prediction
  - Hotspots
  - Spatial Outliers
  - Colocations
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

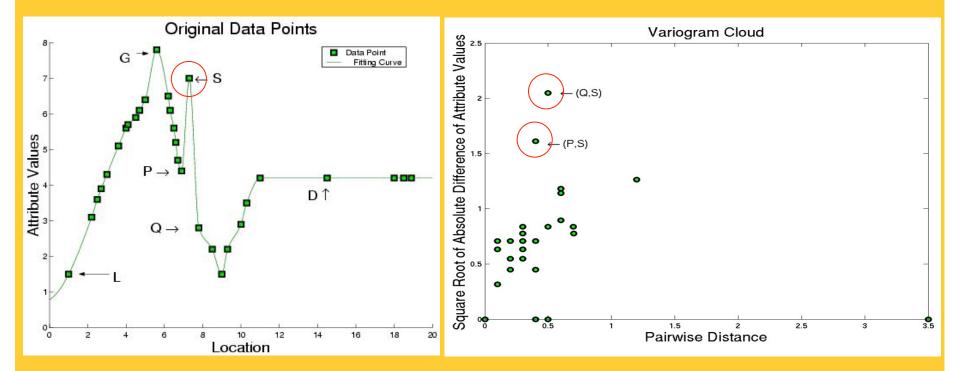
## Outliers: Global (G) vs. Spatial (S)



UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

### **Outlier Detection Tests: Variogram Cloud**

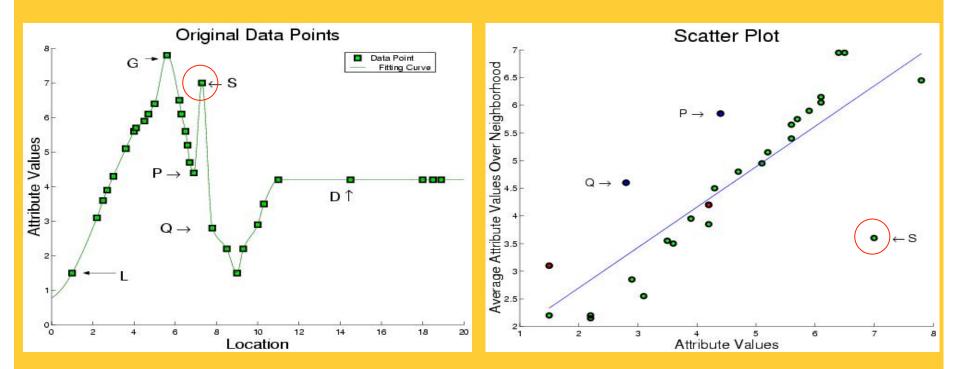
#### Graphical Test: Variogram Cloud



UNIVERSITY OF MINNESOTA Driven to Discover<sup>554</sup>

#### **Outlier Detection - Scatterplot**

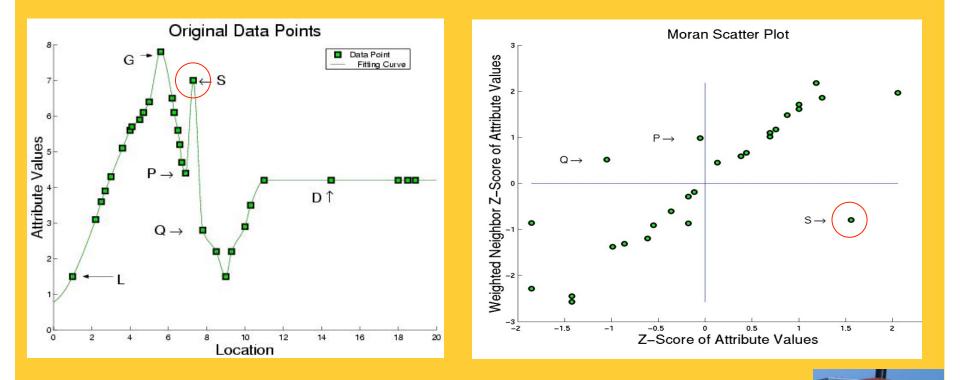
#### Quantitative Tests: Scatter Plot



UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### **Outlier Detection Test: Moran Scatterplot**

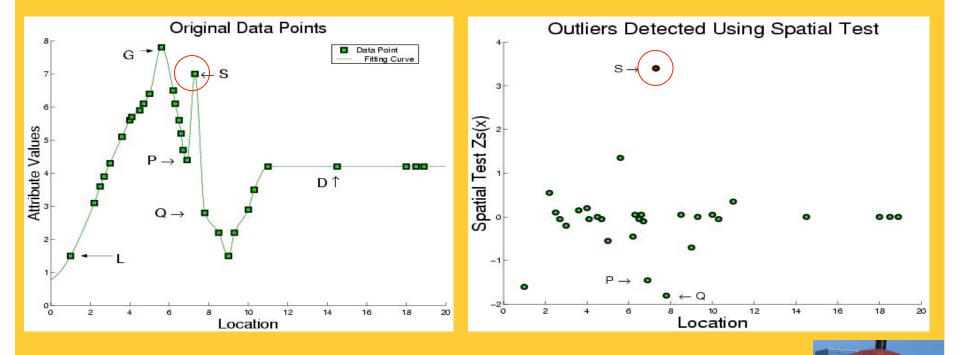
#### Graphical Test: Moran Scatter Plot



UNIVERSITY OF MINNESOTA Driven to Discover<sup>554</sup>

#### **Outlier Detection Tests: Spatial Z-test**

- Quantitative Tests: Spatial Z-test
  - Algorithmic Structure: Spatial Join on neighbor relation



UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

# **Spatial Outlier Detection: Computation**

#### • Separate two phases

- Model Building
- Testing: test a node (or a set of nodes)
- Computation Structure of Model Building
  - Key insights:
    - Spatial self join using N(x) relationship
    - Algebraic aggregate function computed in one scan of spatial join

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

## **Trends in Spatial Outlier Detection**

- Multiple spatial outlier detection
  - Eliminating the influence of neighboring outliers
- Multi-attribute spatial outlier detection
  - Use multiple attributes as features
- Scale up for large data

UNIVERSITY OF MINNESOTA Driven to Discover<sup>™</sup>

## Outline

- Motivation
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
  - Location Prediction
  - Hotspots
  - Spatial Outliers
  - Colocations
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

## **Learning Objectives**

- After this segment, students will be able to
  - Contrast colocations and associations
  - Describe colocation interest measures



# **Background: Association Rules**

• Association rule e.g. (Diaper in T => Beer in T)

| Transaction | Items Bought                                 |
|-------------|----------------------------------------------|
| 1           | {socks, 🜉, milk, 🎒, beef, egg,}              |
| 2           | {pillow, [], toothbrush, ice-cream, muffin,} |
| 3           | { 📑 , 🎒 , pacifier, formula, blanket, }      |
|             |                                              |
| n           | {battery, juice, beef, egg, chicken,}        |

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2
- Apriori Algorithm
  - Support based pruning using monotonicity

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

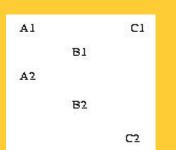
## **Association Rules Limitations**

#### • Transaction is a core concept!

- Support is defined using transactions
- Apriori algorithm uses transaction based Support for pruning

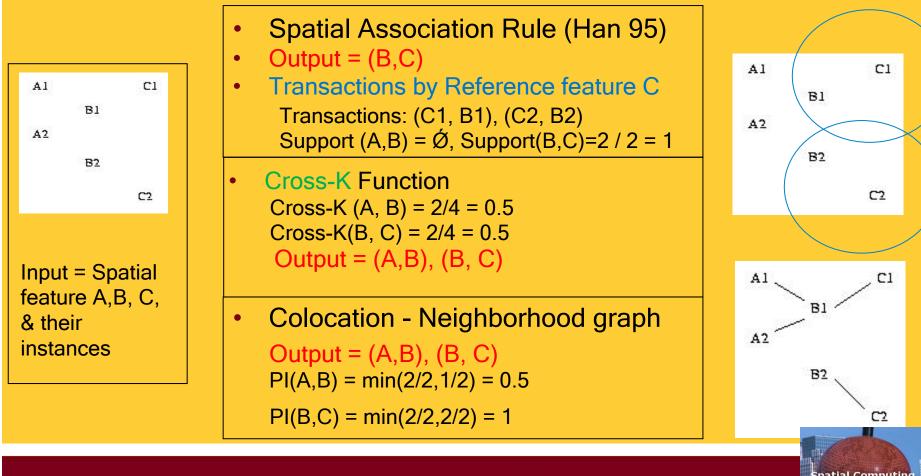
| Transaction | Items Bought                                 |
|-------------|----------------------------------------------|
| 1           | {socks, 🔤, milk, 🍯, beef, egg,}              |
| 2           | {pillow, [], toothbrush, ice-cream, muffin,} |
| 3           | { 📑 , 🎒 , pacifier, formula, blanket, }      |
|             |                                              |

- However, spatial data is embedded in continuous space
  - Transactionizing continuous space is non-trivial !



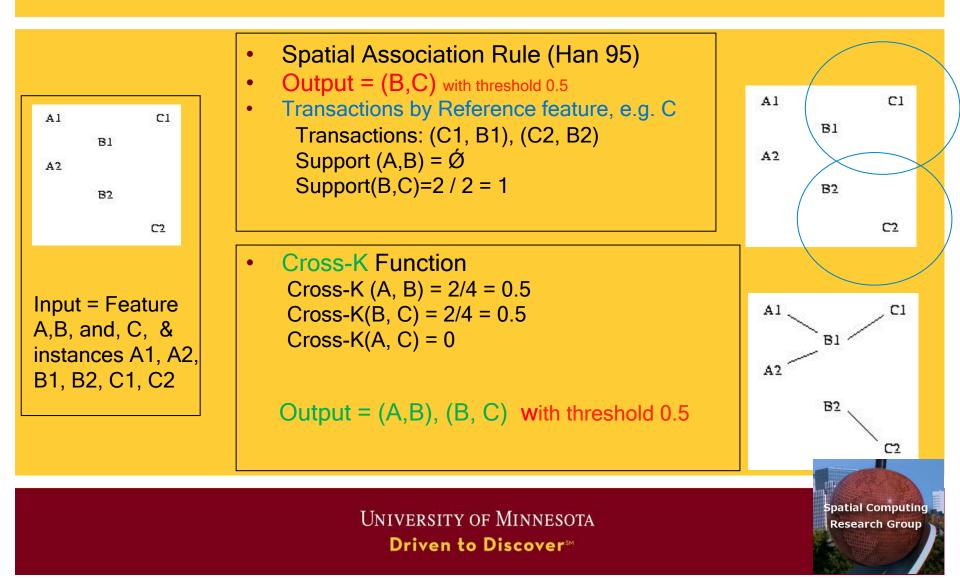
UNIVERSITY OF MINNESOTA Driven to Discover<sup>™</sup>

## **Spatial Association Rule vs. Colocation**



UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

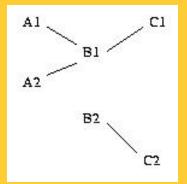
#### **Spatial Association vs. Cross-K Function**



## **Spatial Colocation**

Features: A. B. C Feature Instances: A1, A2, B1, B2, C1, C2 Feature Subsets: (A,B), (A,C), (B,C), (A,B,C) Participation ratio (pr):

 $pr(A, (A,B)) = fraction of A instances neighboring feature {B} = 2/2 = 1$  $pr(B, (A,B)) = \frac{1}{2} = 0.5$ 



**Participation index**  $(A,B) = pi(A,B) = min\{ pr(A, (A,B)), pr(B, (A,B)) \} = min(1, \frac{1}{2}) = 0.5$  $pi(B, C) = min\{ pr(B, (B,C)), pr(C, (B,C)) \} = min(1,1) = 1$ 

#### **Participation Index Properties:**

(1) <u>Computational</u>: Non-monotonically decreasing like support measure

(2) Statistical: Upper bound on Ripley's Cross-K function

UNIVERSITY OF MINNESOTA Driven to Discover<sup>ss</sup>

#### Participation Index >= Cross-K Function

|               | B.1 A.1 | B.1 • A.1 | B.1 A.1 |
|---------------|---------|-----------|---------|
|               | A.3     | A.3       | A.3     |
|               | B.2 A.2 | B.2 A.2   | B.2 A.2 |
| Cross-K (A,B) |         |           |         |
| PI (A,B)      |         |           |         |

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

# Association Vs. Colocation

|                                    | Associations                   | Colocations |
|------------------------------------|--------------------------------|-------------|
| underlying space                   | Discrete market baskets        |             |
| event-types                        | item-types, e.g., Beer         |             |
| collections                        | Transaction (T)                |             |
| prevalence measure                 | Support, e.g., Pr.[ Beer in T] |             |
| conditional<br>probability measure | Pr.[ Beer in T   Diaper in T ] |             |

UNIVERSITY OF MINNESOTA Driven to Discover™

## **Spatial Colocation: Trends**

#### Algorithms

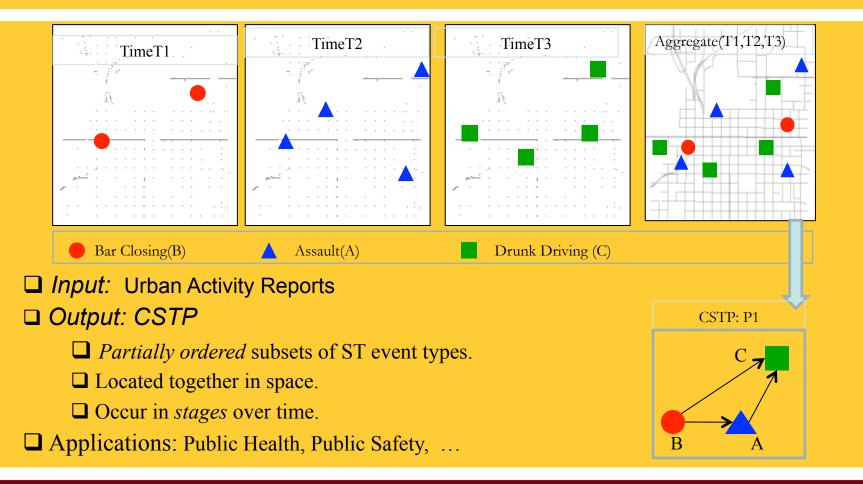
- Join-based algorithms
  - One spatial join per candidate colocation
- Join-less algorithms

#### Spatio-temporal

- Which events co-occur in space and time?
  - (bar-closing, minor offenses, drunk-driving citations)
- Which types of objects move together?

UNIVERSITY OF MINNESOTA Driven to Discover<sup>55</sup>

#### Cascading spatio-temporal pattern (CSTP)



 Details: Cascading Spatio-Temporal Pattern Discovery, IEEE Trans. on Know. & Data Eng, 24(11), 2012. UNIVERSITY OF MINNESOTA

 Driven to Discover<sup>™</sup>

# MDCOP Motivating Example

• Manpack stinger

(2 Objects)



M1A1\_tank (3 Objects)



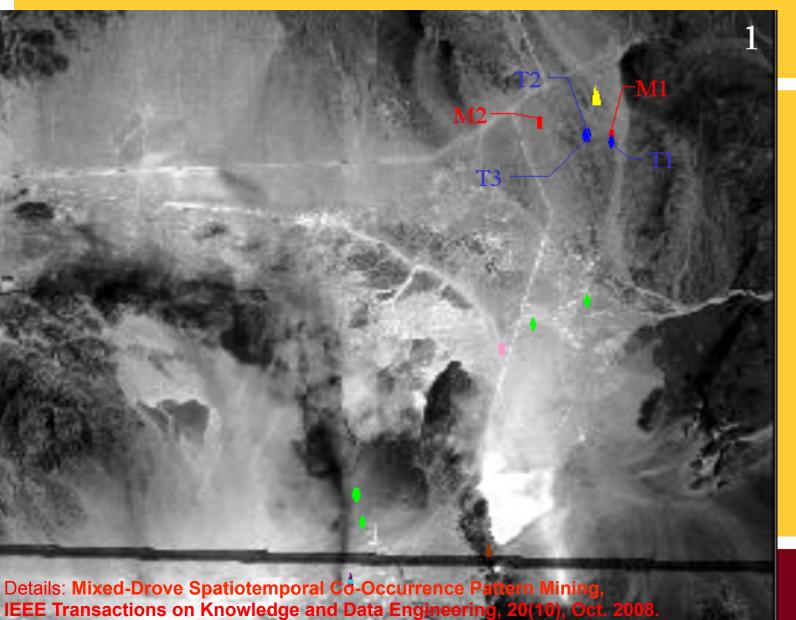
- Field\_Marker
   (6 Objects)
- T80\_tank(2 Objects)



BRDM\_AT5 (enemy) (1 Object)



#### **MDCOP Motivating Example : Output**



Colores and

Manpack stinger

(2 Objects)



• M1A1\_tank (3 Objects)



Field\_Marker
 (6 Objects)

T80\_tank
 (2 Objects)



BRDM\_AT5 (enemy) (1 Object)



## Outline

- Motivation
  - Use cases
  - Pattern families
- Spatial Data Types
- Spatial Statistical Foundations
- Spatial Data Mining
- Conclusions

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>



#### What's Special About Mining Spatial Data?

|            |              | Spatial DM                                        |
|------------|--------------|---------------------------------------------------|
| Input Da   | ta           | Often implicit<br>relationships, complex<br>types |
| Statistica | l Foundation |                                                   |
| Output     | Association  |                                                   |
|            | Clusters     |                                                   |
|            | Outlier      |                                                   |
|            | Prediction   | -                                                 |

UNIVERSITY OF MINNESOTA Driven to Discover<sup>sm</sup>

# Acknowledgements

#### National Science Foundation (Current Grants)

- 1320580 : III: Investigating Spatial Big Data for Next Generation Routing Services
- 0940818: Expedition: Understanding Climate Change: A Data Driven Approach
- IIS-1218168 : III:Towards Spatial Database Management Systems for Flash Memory Storage
- 1029711 :: Datanet: Terra Populus: A Global Population / Environment Data Network

#### **USDOD** (Current Grants)

- HM0210-13-1-0005: Identifying and Analyzing Patterns of Evasion
- SBIR Phase II: Spatio-Temporal Analysis in GIS Environments (STAGE) (with Architecture Technology Corporation)

#### University of Minnesota (Current Grants)

- Infrastructure Initiative: U-Spatial Support for Spatial Research
- MOOC Initiative: From GPS and Google Earth to Spatial Computing

#### Past Sponsors, e.g., NASA, APL AGU/THE MOULO UNIVERSITY OF MINNESOTA Driven to Discover™

# References

#### Colocations

- Discovering colocation patterns from spatial data sets: a general approach, IEEE Transactions on Knowledge and Data Engineering, 16(12), 2004 (with Y. Huang et al.).
- A join-less approach for mining spatial colocation patterns, IEEE Transactions on Knowledge and Data Engineering, 18 (10), 2006. (with J. Yoo).

#### **Spatial Outliers**

- Detecting graph-based spatial outliers: algorithms and applications (a summary of results), Proc.: ACM International Conference on Knoweldge Discovery & Data Mining, 2001 (with Q. Lu et al.)
- A unified approach to detecting spatial outliers, Springer GeoInformatica, 7 (2),), 2003. (w/ C. T. Lu, et al.)

#### Hot-Spots

- Discovering personally meaningful places: An interactive clustering approach, ACM Transactions on Information Systems (TOIS) 25 (3), 2007. (with C. Zhou et al.)
- A K-Main Routes Approach to Spatial Network Activity Summarization, IEEE Transactions on Knowledge & Data Engineering, 26(6), 2014. (with D. Oliver et al.)

#### **Location Prediction**

- Spatial contextual classification and prediction models for mining geospatial data, IEEE Transactions on Multimedia, 4 (2), 2002. (with P. Schrater et al.)
- Focal-Test-Based Spatial Decision Tree Learning, to appear in IEEE Transactions on Knowledge and Data Eng. (a summary in Proc. IEEE Intl. Conference on Data Mining, 2013).

#### **Change Detection**

Spatiotemporal change footprint pattern discovery: an inter-disciplinary survey. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 4(1), 2014. (with X. Zhou et al.)

#### UNIVERSITY OF MINNESOTA Driven to Discover<sup>554</sup>