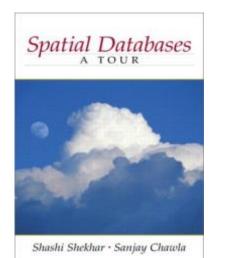
What is Special about **Spatial Data Science and GeoAl?**

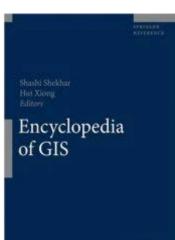
Shashi Shekhar

McKnight Distinguished University Professor, University of Minnesota

www.cs.umn.edu/~shekhar, shekhar@umn.edu

Acks: Collaborators, Sponsors (NSF, USDOD NGA, USDOE ARPA-E, USDA NIFA, NIH, ...)





Summer 2018

As a long-established information science discipline, the Geographic Information Science & Inchrohogy (IGSR) community has key combinations to moving data science curricula. This statement articulates the University Consortium for Geographic Information Science's (IGGR) position for the academic GSR is community and provide recommendations and action atems for the benefit of both internal and external audiences, for Mar 21-24, 2018, UGSB had action and action and external audiences. To Mar 21-24, 2018, UGSB had action and action conference on the Catrgraphic memory and the science of a action and the science of the terms of the Geographic Information Science's activation and the science of the Catrgraphic memory and the activation of the science of the science of the memory of the science of a science activation of the science of activity and the science of the science of the science of activity and the science of the science of the science of activity activity and the science of activity activity and the science of science and science of the science of t

Context

Virtually every sector of industry, business, government, and science is awards in data of great source, savely, and velocity. In july of calls for fairness acconstability, transprency, and reproductibility, data accuracy and authority are also highly relevant. As an interdisciplinar field, there are high expectations for the capabilities of data science? In oddess mynical damands for innovative breakthorughs. "Data scienciat" has become an in-demand job titls, though the nature of the positions varies widely. The most common still sets required are availytical quantitative in nature: to be able to manage and heip others interpret large and diverse data sets.

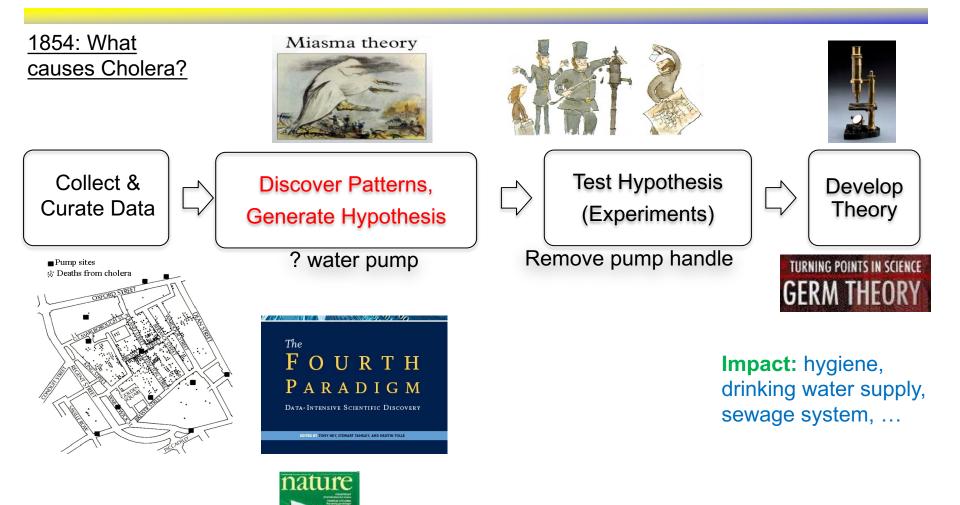
Data that are geographically referenced or contain some type of location markers are both common and of high value (e.g., data subject to state-specific policies, luins and regulations) sensed management from the census; location traces of anartphones and vehicles; remotely sensed magery from satellise, aircart and small unmanned aerial vehicle; voluntereed geographic information; geographically referenced solatil media policipa). A 2011 McOnres-

¹⁵ Berman et al., <u>Realizing the Potential of Data Science</u>, Communications of the ACM, 61(4):67-72, April 2018, DOI: 10.1145/J188721.

SHASHI SHEKHAR AND PAMELA VOLD

THE MIT PRESS ESSENTIAL KNOWLEDGE SERIES

A Spatial Data Science Story



What has changed? Spatial Data Revolution

Spatial	Last Century	Last Decade
Data	Few satellites and sensors	Nano-satellites, Billions of GPS enabled smartphones
Data Access	Need special hardware and network	
Spatial Platforms	ESRI Arc/Info	
Spatial Data Science	Spatial Patterns, e.g., hotspots (SatScan, ESRI Geostatistics)	
Spatial Visualization	Quilt, e.g., MS Terraserver	

Spatial Computing is Ubiquitous Today!

- 2 billion GPS receivers in use, will hit 7 billion by 2022.
- Besides location, it reference time for critical infrastructure
 - Telecommunications industry
 - Banks
 - Airlines...
- GPS is the single point of failure for the entire modern economy.

- 50,000 incidents of deliberate (GPS) jamming last two years
 - Against Ubers, Waymo's self-driving cars, delivery drones from Amazon

Bloomberg Businessweek

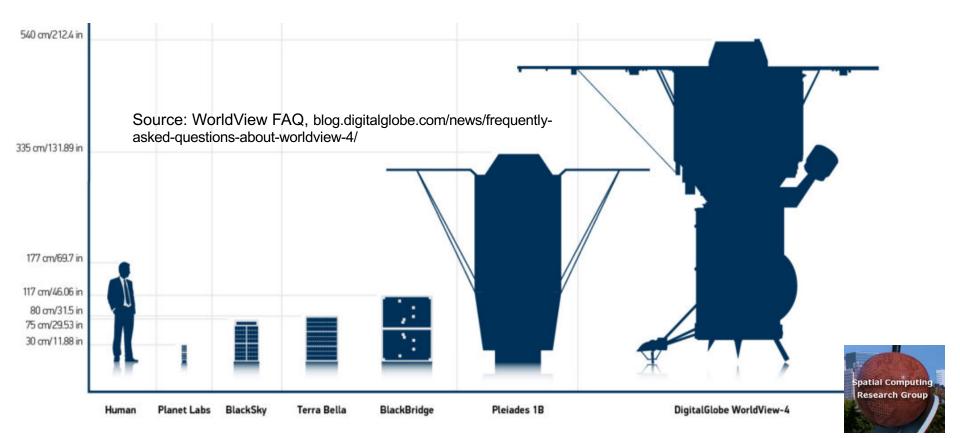
July 25, 2018, 4:00 AM CDT

The World Economy Runs on GPS. It Needs a Backup Plan

Source: https://www.bloomberg.com/news/features/2018-07-25/the-world-economy-runs-on-gps-it-needs-a-backup-plan

Large Constellations of Small Satellites

- Hi-frequency (e.g., daily or hourly) time-series of imagery of entire earth
- Small Satellites: video (5-minutes): https://geospatialstream.com/sciencecasts-nasa-embraces-small-satellites/
- Large Constellations
 - 2021: Planet Labs: 200+ satellites: daily Earth scan (1m resolution, visible+NIR bands)



Spatial Data Revolution

1. GPS & Location traces

- 2 billion GPS receivers today (7 billion by 2022)
- Reference clock for telecom, banks, ...
- Help understand Spatio-temporal patterns of life

2. (Nano-)Satellite Imagery, ...

The World Economy Runs on GPS. It Needs a Backup Plan

Bloomberg Businessweek

July 25, 2018, 4:00 AM CDT

McKinsey Global Institute

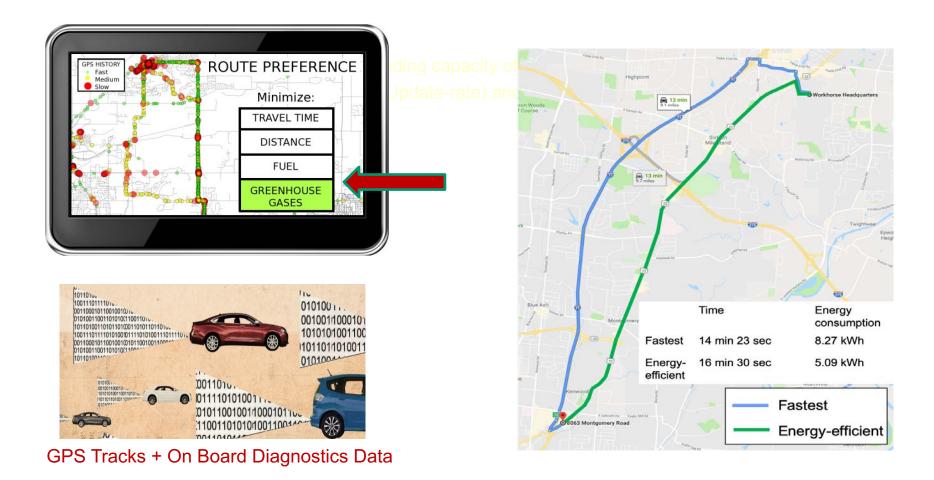
The study estimates that the use of personal location data could save consumers worldwide more than \$600 billion annually by 2020. Computers determine users' whereabouts by tracking their mobile devices, like cellphones.

The New York Times

Published: May 13, 2011

Source: Y. Xie et al., <u>Transforming Smart Cities With Spatial Computing</u>, Proc. <u>IEEE Intl. Conf. on Smart Cities</u>, 2018.

Next Generation Navigation App to Reduce Emission, Energy use



Details: Y. Li, P. Kotwal, P. Wang, Y. Xie, S. Shekhar, and W. Northrop, <u>Physics-guided Energy-efficient Path</u> <u>Selection Using On-board Diagnostics Data</u>, ACM/IMS Trans. Data Sc. 1(3):1-28, Article 22, Oct. 2020.

What has changed? Spatial Data Access

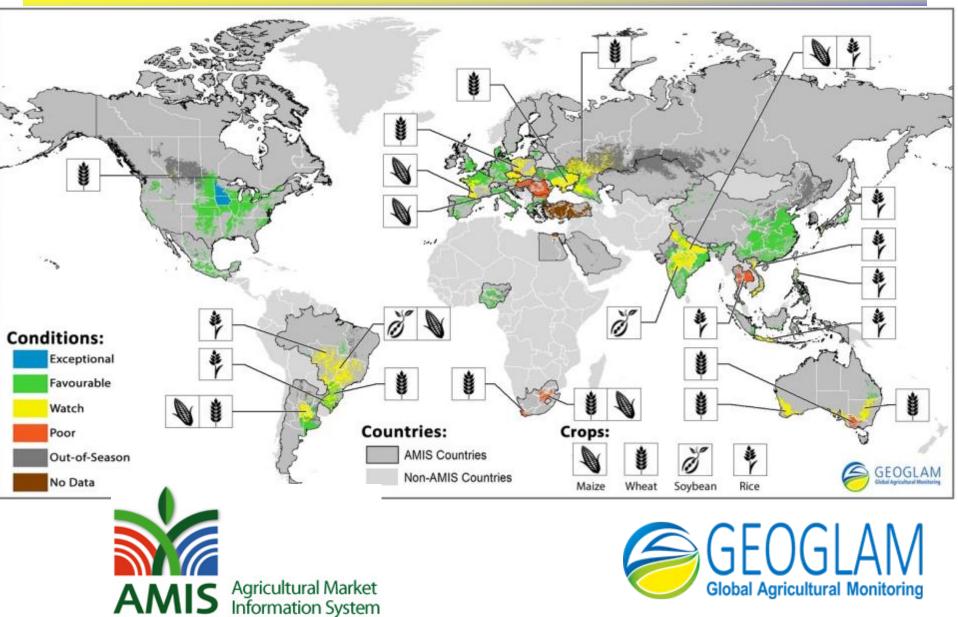
Spatial	Last Century	Last Decade
Data	Few satellites and sensors	Nano-satellites, Billions of GPS enabled smartphones
Data Access	Need special hardware and network	Cloud based repositories and analytics (e.g., DARPA GCA)
Spatial Platforms	ESRI Arc/Info	
Spatial Data Science	Spatial Patterns, e.g., hotspots (SatScan, ESRI Geostatistics)	
Spatial Visualization	Quilt, e.g., MS Terraserver	

Easier Access: Cheap (or free) Cloud Repositories

- 2008: USGS gave away 35-year LandSat satellite imagery archive
 - Analog of public availability of GPS signal in late 1980s
- 2017: Cloud-based repositories of geospatial data
 - Explosion in machine learning on satellite imagery to map crops, water, buildings, roads, ...

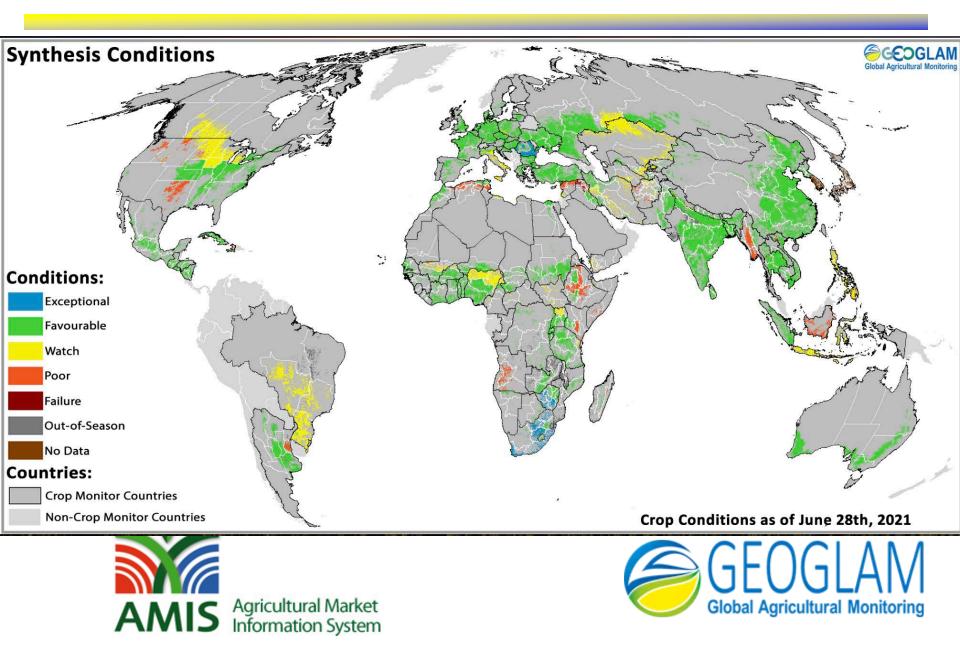
	Google Earth Engines	NEX	AWS Earth
Elevation, Landsat, LOCA, MODIS, NAIP	X	Х	х
NOAA	x		x
AVHRR, FIA, GIMMM, GlobCover, NARR, TRIMM, Sentinel-1	x	Х	
IARPA, GDELT, MOGREPS, OpenStreetMap, Sentinel-2, SpaceNet (building/road labels for ML)			х
CHIRPS, GeoScience Australia, GSMap, NASS, Oxford Map, PSDI, WHRC, WorldClim, WorldPop, WWF,	х		
BCCA, FLUXNET		х	

Global Agriculture Monitoring



Agricultural Market Information System

Global Agriculture Monitoring



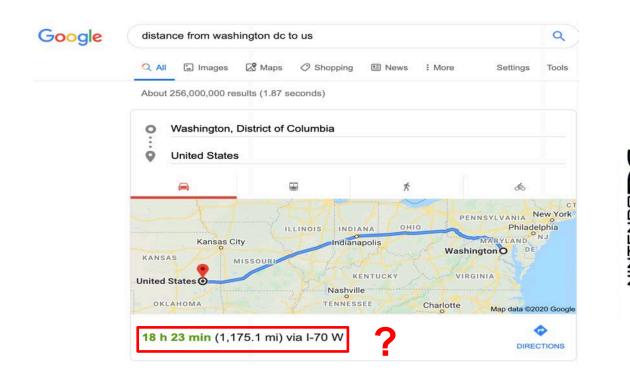
What has changed? Spatial Big Data Platforms

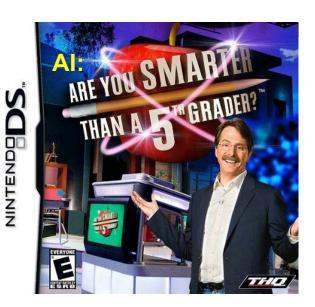
Spatial	Last Century	Last Decade
Data	Few satellites and sensors	Nano-satellites, Billions of GPS enabled smartphones
Data Access	Need special hardware and network	Cloud based repositories, e.g., Earth on AWS
Spatial Platforms Sp Sci	Benositories Users	Geospatial Cloud Analytics (Monitor crops, fracking, illegal fishing), ESRI GIS Tools for Hadoop,
Sp Vis Analytics Marketplac	e Platform with Tools and Interface Providers	

Spatial Data Types >> Points

Q? What is distance between Washington D.C. and U.S.A.?

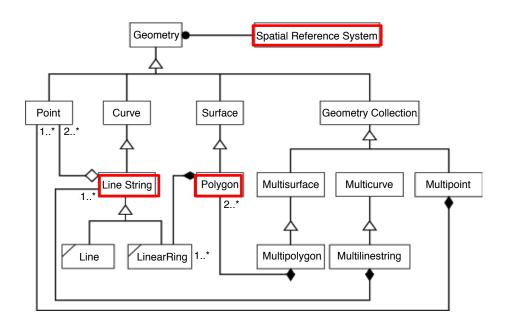
- Zero (Washington D.C. is inside U.S.A.)
- NSF OKN funded 2 grants on geo-knowledge networks!





Spatial Data Types: OGC Simple Features Standard

- Data types: Point, LineString, Polygon, Collections
- Relationships: Topological, Metric (e.g., distance)
- ML Challenge: implicit spatial relationships
 - Approach: pre-compute for feature extraction



·			
Basic Functions	SpatialReference ()		
	Envelop ()		
	Export ()		
	IsEmpty ()		
	IsSimple ()		
	Boundary ()		
Topological / Set	Equal		
Operators	Disjoint		
	Intersect		
	Touch		
	Cross		
	Within		
	Contains		
	Overlap		
Spatial Analysis	Distance		
· ·	Buffer		
	ConvexHull		
	Intersection		
	Union		
	Difference		
	DymmDiff		

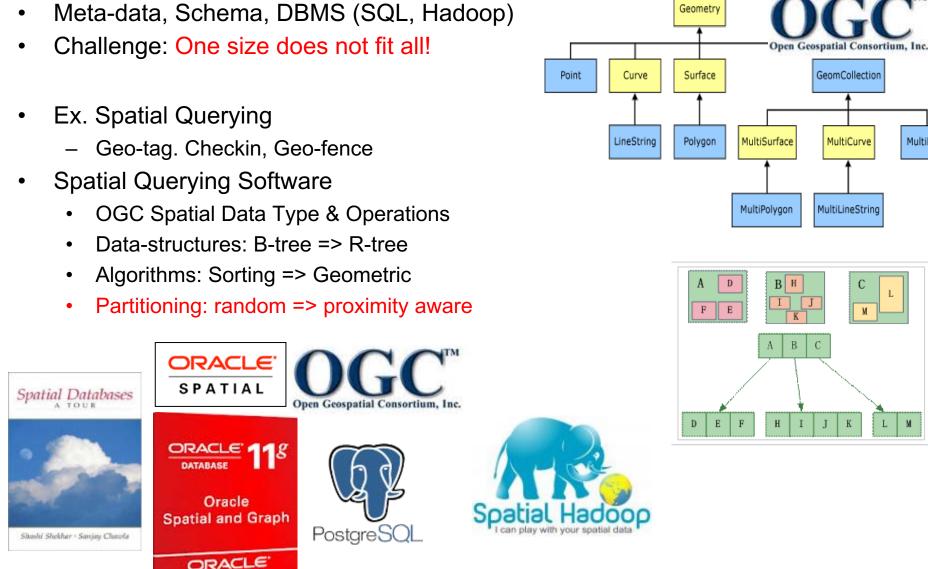
Details: S. Shekhar et al., <u>Spatial Databases: Accomplishments and Research Needs</u>, IEEE Trans. on Knowledge and Data Eng., 11(1):45-55, Jan.-Feb. 1999.

Spatial Big Data Curation

MultiPoint

L

M



Spatial Big Data Platforms

	Genre	Examples	
Relational DE Spatial Librar		Oracle, IBM DB2, PostgreSQL, MS SQL Server OGC Simple Features,	
Parallel DBM	S	Teradata, Vertica, Greenplum, DataAllegro, ParAccel	
Big Data Plat	forms	Hadoop, MapReduce, Spark, Hbase, Hive,	
		ESRI GIS Tools for Hadoop, GeoWave, SpatialSpark, GeoSpark, Simba, Hadoop-GIS, SpatialHadoop, ST-Hadoop	
Legend		Legend	
Legend Block_0 (64M)	Source: X.Yao et al.	DL L & COND	
	Source: X.Yao et al., Computers and Geo	Block_0 (38M)	

What has changed? Spatial Data Science

Spatial	Last Century	Last Decade
Data	Few satellites and sensors	Nano-satellites, Billions of GPS enabled smartphones
Data Access	Need special hardware and network	Cloud based repositories, e.g., Earth on AWS
Spatial Platforms	ESRI Arc/Info	SQL3/OGC, e.g., Postgis, ESRI GIS Tools for Hadoop, Google Earth Engine
Spatial Data Science	Spatial Patterns, e.g., hotspots (SatScan, ESRI Geostatistics)	 (a) Spatial Network Patterns, e.g., linear hotspots (b) Spatio-temporal (ST) patterns, e.g., Change time-series
Spatial Visualization	Quilt, e.g., MS Terraserver	

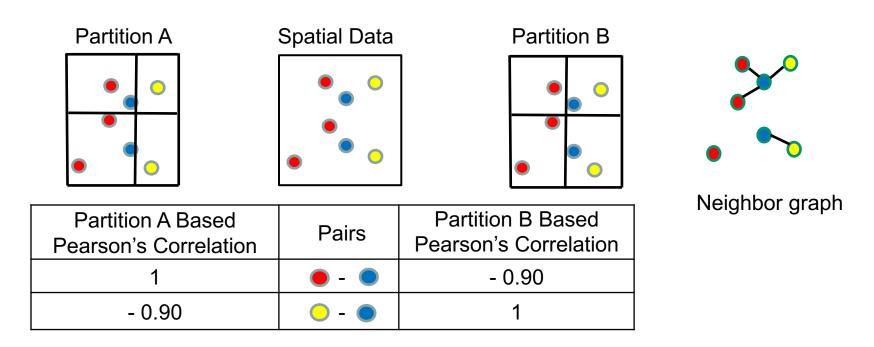
Spatial Challenges: Traditional Data Science

- Traditional methods not robust in face of
 - Challenge 1: Spatial continuity
 - Challenge 2: Auto-correlation, Heterogeneity, Edge-effect, ...
 - Challenge 3: Noise

Details: <u>Data Science for Earth: The Earth Day Report</u>, E. Eftelioglu, S. Shekhar, J. Hudson, L. Joppa, C. Baru, V. Janeja, et al. ACM SIGKDD Explorations Newsletter, 22(1), May 2020

Challenge 1: Continuous Space

- Traditional methods not robust in face of Spatial continuity
 - Gerrymandering risk: Classical methods not robust
 - Result changes if spatial partitioning changes
 - Formally, Modifiable Areal Unit Problem (MAUP)

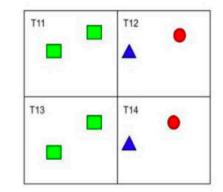


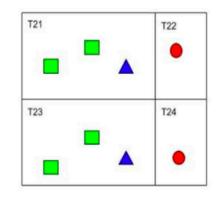
Details: <u>Data Science for Earth: The Earth Day Report</u>, E. Eftelioglu, S. Shekhar, J. Hudson, L. Joppa, C. Baru, V. Janeja, et al. ACM SIGKDD Explorations Newsletter, 22(1), May 2020

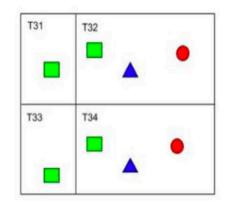
Classical Data Mining Methods not robust either!

Consider the spatial Data in Figure (a) Along with 3 alternative partitions in Figures (b), (c) and (d).

	٠
	•







(a) Map of 3 item-types

(b) Spatial Partition P1

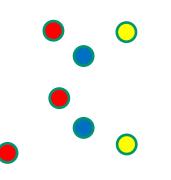
(c) Spatial Partition P2

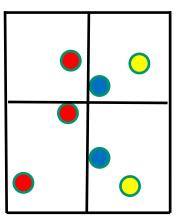
(d) Spatial Partition P3

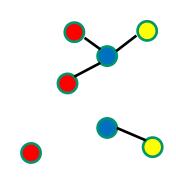
Spatial Partitioning Definition	P1	P2	Р3
Transactions	T11, T12, T13, T14	T21, T22, T23, T24	T31, T32, T33, T44
Associations with support >= 0.5	(🔺 😐)	(🗖 🔺)	(■▲●)

Approach: Neighbor Graph

- Challenge: One size does not fit all
- Ex. Interaction patterns







(a) a map of 3 features

(b) Spatial Partitions

(c) Neighbor graph

	Pearson's Correlation	Ripley's cross-K	Participation Index
	-0.90	0.33	0.5
\bigcirc \bigcirc	1	0.5	1

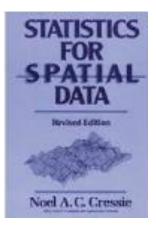
Details: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

A Metric of Spatial Cross-Correlation

Ripley's Cross K-Function Definition

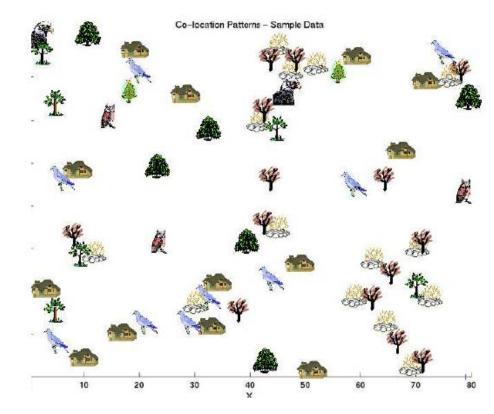
 $K_{ij}(h) = \lambda_j^{-1} E$ [number of type *j* event within distance *h* of a randomly chosen type *i* event]

- Cross K-function of some pair of spatial feature types
- Example
 - Which pairs are frequently co-located
 - Statistical significance



Co-locations

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types

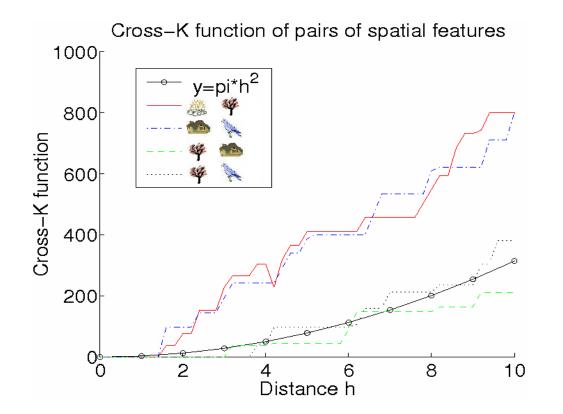


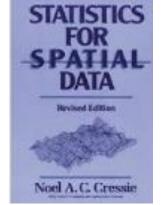
Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

Spatial Computing Research Group

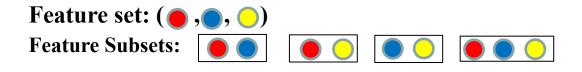
Illustration of Cross-Correlation

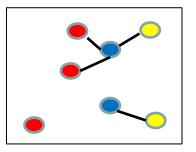
• Illustration of Cross K-function for Example Data





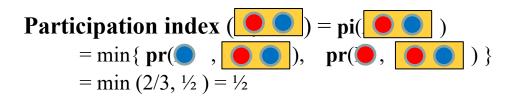
Spatial Colocation





Participation ratio (pr):

pr(\bigcirc , \bigcirc) = fraction of \bigcirc instances neighboring feature { \bigcirc } = 2/3 **pr**(\bigcirc , \bigcirc) = $\frac{1}{2}$



Participation Index Properties:

- (1) Computational: Non-monotonically decreasing like support measure
- (2) Statistical: Upper bound on Ripley's Cross-K function

Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

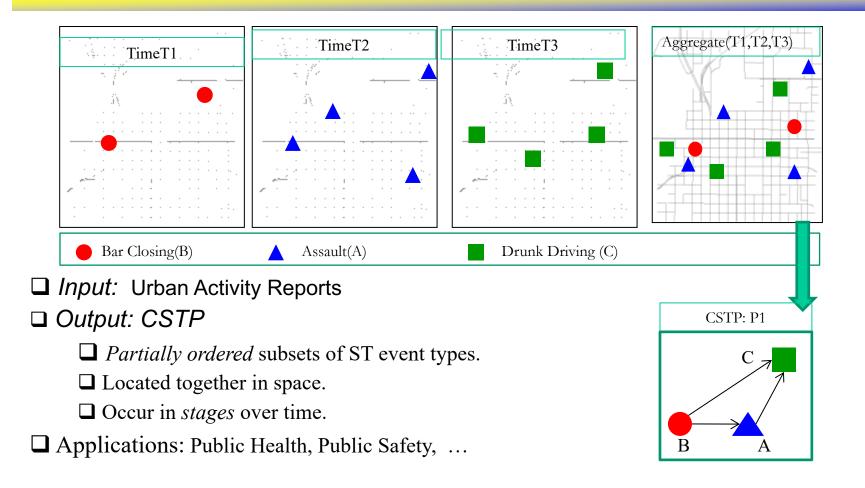
Participation Index >= Cross-K Function

	B.1 A.1	B.1 A.1	B.1 A.1
	A.3	A.3	A.3
	B.2 A.2	B.2 A.2	B.2 A.2
Cross-K (A,B)	2/6 = 0.33	3/6 = 0.5	6/6 = 1
PI (A,B)	2/3 = 0.66	1	1

Spatial Colocation: Trends

- Algorithms
 - Join-based algorithms
 - One spatial join per candidate colocation
 - Join-less algorithms
- Statistical Significance
 - ?Chance-patterns
- Spatio-temporal
 - Which events co-occur in space and time?
 - (bar-closing, minor offenses, drunk-driving citations)
 - Which types of objects move together?

Cascading spatio-temporal pattern (CSTP)



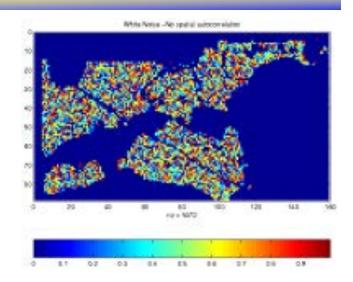
Spatial Challenges: Traditional Data Science

- Traditional methods not robust in face of
 - Challenge 1: Spatial continuity
 - Challenge 2: Auto-correlation, Heterogeneity, Edge-effect, ...
 - Challenge 3: Noise

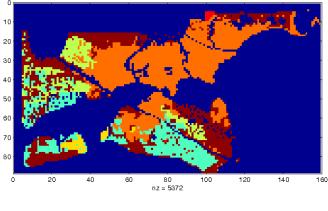
Details: <u>Data Science for Earth: The Earth Day Report</u>, E. Eftelioglu, S. Shekhar, J. Hudson, L. Joppa, C. Baru, V. Janeja, et al. ACM SIGKDD Explorations Newsletter, 22(1), May 2020

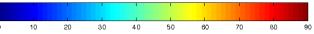
Challenge 2: Spatial Auto-correlation

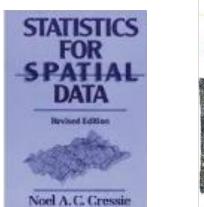
- Traditional Statistics, ML, Data Mining
- Ubiquitous i. i. d. assumption
 - Data samples independent of each other
 - From identical distribution
- Problem
 - Ignores auto-correlation, heterogeneity
 - Salt n Pepper noise

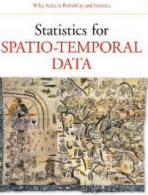


Vegetation distribution across the marshland



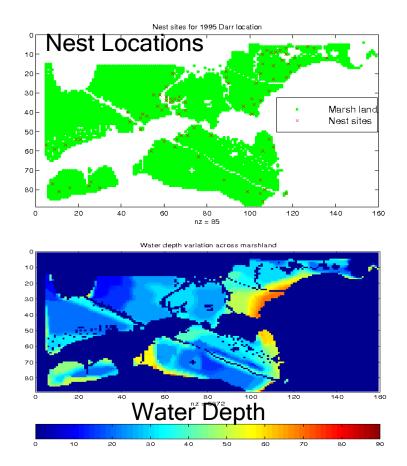


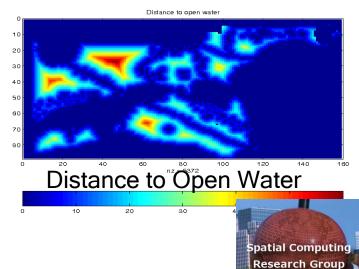




Nod Cressie - Christopher K. Wikle

Illustration of Location Prediction Problem





Vegetation distribution across the marshland

Spatial Auto-Regression & Parameter Estimation

Name	Model	- 41	· · · · · · · · · · · · · · · · · · ·
Classical Linear Regression	$\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$,	e spatial auto - regression (auto - correlation) parameter - by - <i>n</i> neighborhood matrix over spatial framework
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$		- <i>j</i>

Maximum Likelihood Estimation

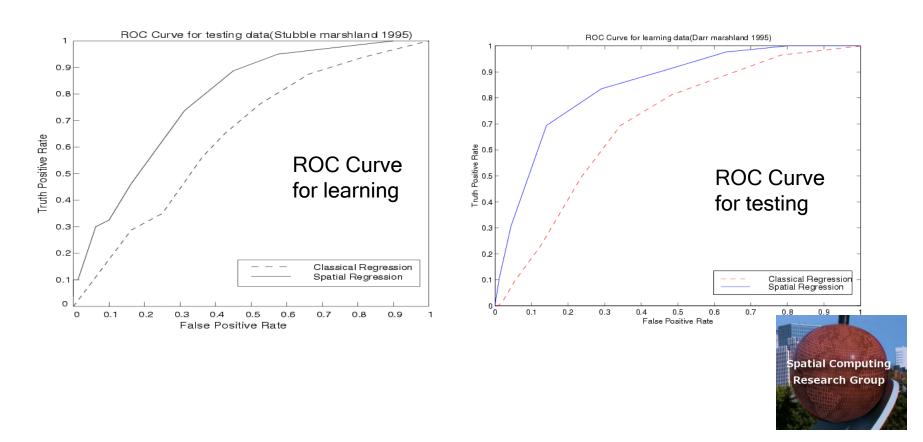
$$\ln(L) = \ln\left|\mathbf{I} - \rho \mathbf{W}\right| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE$$

- Computing determinant of large matrix is a hard (open) problem!
 - size(W) is quadratic in number of locations/pixels.
 - Typical raster image has Millions of pixels
 - W is sparse but not banded.

Details: A parallel formulation of the spatial auto-regression model for mining large geo-spatial datasets, SIAM Intl. Workshop on High Perf. and Distr. Data Mining, 2004. (with B. Kazar)

Comparing Traditional and Spatial Models

- Dataset: Bird Nest prediction
- Linear Regression
 - Lower prediction accuracy, coefficient of determination,
 - Residual error with spatial auto-correlation
- Spatial Auto-regression outperformed linear regression



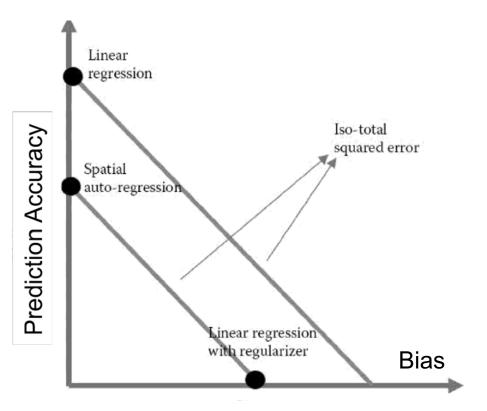
Prediction Error and Bias Trade-off

- Linear Regression (LR) $y = X\beta + \varepsilon$
- LR with Auto-correlation Regularizer

$$y = X\beta + \varepsilon$$

$$\varepsilon = \|y - X\beta\|^2 + \|y - y_{neighbor}\|^2$$

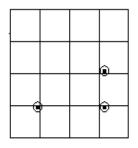
• Spatial Auto-Regression $y = \rho W y + X \beta + \varepsilon$

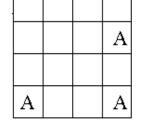


Source: Geospatial Data Science: A Transdisciplinary Approach. In *Geospatial Data Science Techniques and Applications* (pp. 17-56). CRC Press, 2017 (E. Eftelioglu,R. Ali, X. Tang., Y. Xie, Y., Li and S. Shekhar).

Research Needs for Location Prediction

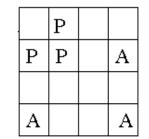
- Spatial Auto-Regression
 - Estimate W
 - Scaling issue $\rho Wy vs. X\beta$
- Spatial interest measure
 - e.g., distance(actual, predicted)



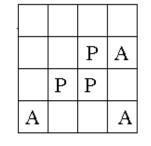


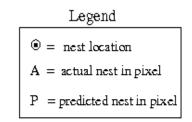
(a) Actual Sites

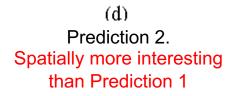
(b) Pixels with actual sites



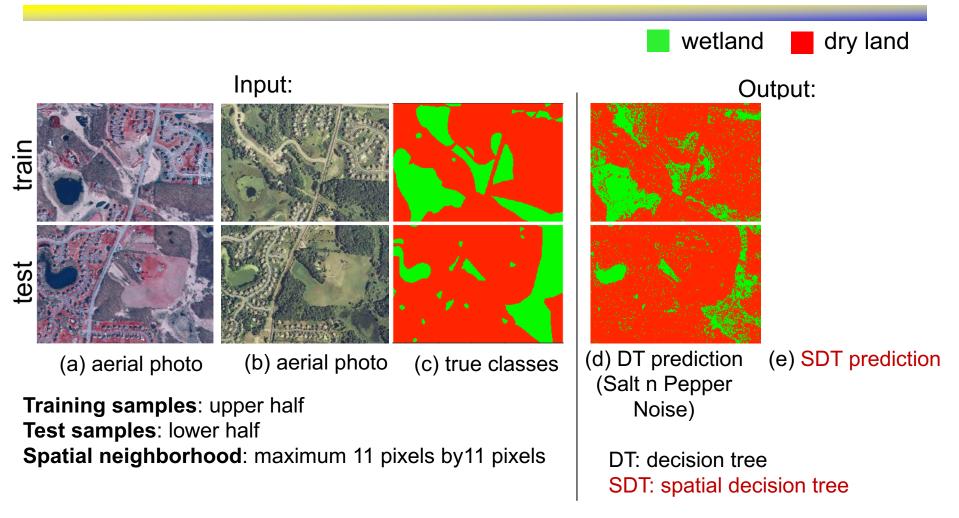
(c) Prediction 1







Salt n Pepper Noise



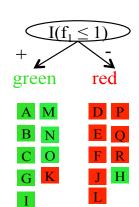
Details: Focal-Test-Based Spatial Decision Tree Learning. <u>IEEE Trans. Knowl. Data Eng. 27(6)</u>: 1547-1559, 2015 (summary in Proc. IEEE Intl. Conf. on Data Mining, 2013).(w/ Z. Jiang et al.)

Spatial Decision Tree

Traditional decision tree

Inputs: table of records

ID	f ₁	f ₂	Г ₁	class
Α	1	1	1	green
В	1	1	0.3	green
С G	1	3	0.3	green
G	1	1	0.3	green
-	1	3	0	green
Κ	1	2	-1	red
Μ	1	1	1	green
Ν	1	1	0.3	green
0	1	3	0.3	green
D	3	2	0.3	red
Е	3	2	0.3	red
F	3	2	1	red
Н	3	1	-1	green
J	3 3	2	0	red
L	3 3	2	0.3	red
Р	3	2	0.3	red
Q	3	2	0.3	red
R	3	2	1	red



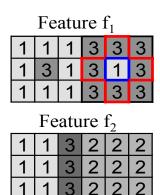
Predicted map					
Α	В	С	D	Е	F
G	Η	Т	L	Κ	Г
Μ	Ν	0	Ρ	Q	R

feature test	information gain
f ₁ ≤ 1	0.50
f ₂ ≤ 1	0.46
f ₂ ≤ 2	0.19

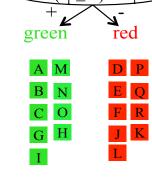
Spatial decision tree

Inputs:

- feature maps, class map
- Rook neighborhood



Class map



 $I(f_1 \le 1) * \Gamma_1$

Focal function Γ_1					
1	.3	.3	.3	.3	1
.3	-1	0	0	-1	.3
1	.3	.3	.3	.3	1

Predicted map					
Α	В	С	D	Е	F
G	Н	I	J	Κ	L
M	N	0	Ρ	Q	R

Location Prediction Models

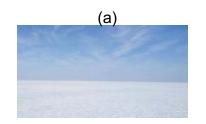
- Traditional Models, e.g., Regression (with Logit or Probit),
 - Linear Regression, Bayes Classifier, ...
- Semi-Spatial : auto-correlation regularizer
- Spatial Models
 - Spatial autoregressive model (SAR)
 - Markov random field (MRF) based Bayesian Classifier

Traditional	Spatial	
$y = X\beta + \varepsilon$	$y = \rho W y + X \beta + \varepsilon$	
$\Pr(C_i \mid X) = \frac{\Pr(X \mid C_i) \Pr(C_i)}{\Pr(X)}$	$\Pr(c_i \mid X, C_N) = \frac{\Pr(C_i) \Pr(X, C_N \mid c_i)}{\Pr(X, C_N)}$	
Neural Networks	Convolutional Neural Networks	
Decision Trees	Spatial Decision Trees	

 $\varepsilon = \|y - \beta X\|^2 + \|\beta X - \beta X_{neighbor}\|^2$

Spatial Variability Challenge: Amorphous Features

Q1. Which images show snow ?



Runn of Kutch, Gujarat, India

White Sands, NM, USA

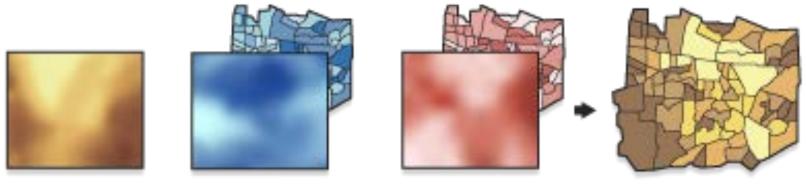
Snow

Q2. Which geo-challenges are addressed by Convolutional Neural Network (CNN) ?
 (a) High Cost of spurious and missed patterns
 (b) Spatial Auto-correlation
 (c) Spatial Heterogeneity
 (d) Teleconnections

Details: <u>Towards Spatial Variability Aware Deep Neural Networks (SVANN): A Summary of Results</u>, J. Gupta, Y. Xie, and S. Shekhar, DeepSpatial2020 (1st ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems). Best paper award.

Modeling Spatial Heterogeneity: GWR

- Geographically Weighted Regression (GWR)
 - Goal: Model spatially varying relationships
 - Example: $y = X\beta' + \varepsilon'$ Where β' and ε' are location dependent



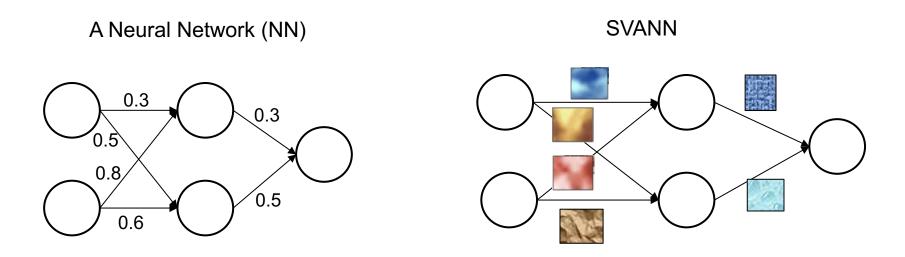
 $\beta_0 + \beta_1$ Population

 β_2 Income = Crime

Source: resources.arcgis.com

Spatial Variability Aware Neural Networks (SVANN)

- Each NN parameter is a map i.e., a function of location
 - Similar to Geographically Weighted Regression



- Evaluation Task:
 - Urban Garden Detection across Hennepin County, MN and Fulton County, GA.
 - SVANN outperformed OSFA by 14.34% on F1-scores.

Details: J. Gupta, Y, Xie and S. Shekhar,

Towards Spatial Variability Aware Deep Neural Networks (SVANN): A Summary of Results, ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems (Deepspatial 2020), 2020. (Best Paper Award). <u>arXiv:2011.08992v1</u> Full paper accepted for ACM Transaction on Intelligent Systems and Technology.

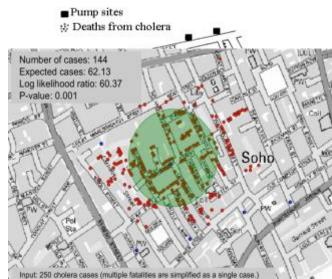
Spatial Challenges: Traditional Data Science

- Traditional methods not robust in face of
 - Challenge 1: Spatial continuity
 - Challenge 2: Auto-correlation, Heterogeneity, Edge-effect, ...
 - Challenge 3: Noise
 - High cost of spurious patterns

Details: <u>Data Science for Earth: The Earth Day Report</u>, E. Eftelioglu, S. Shekhar, J. Hudson, L. Joppa, C. Baru, V. Janeja, et al. ACM SIGKDD Explorations Newsletter, 22(1), May 2020

Dealing with Noise & Spurious Chance Patterns

- Statistics: Deal with Noise
 - Quantify uncertainty, confidence, ...
 - Is it (statistically) significant?
 - Is it different from a chance event or rest of dataset?
 - e.g., SaTScan finds circular hot-spots
- Spatial Statistics, Spatial Data Mining
 - Auto-correlation, Heterogeneity, Edge-effect, ...



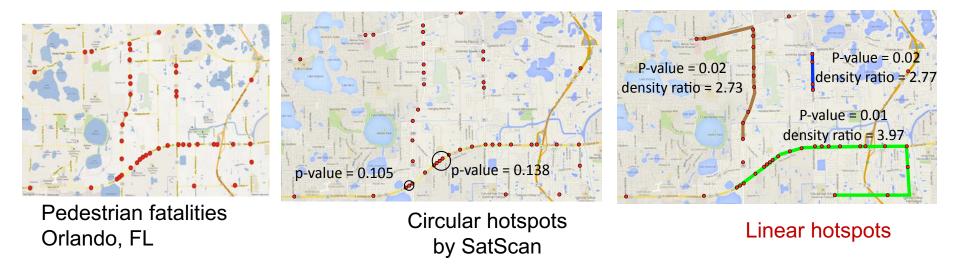
Satscan[™] Software for the spatial, temporal, and space-time scan statistics

Spatial Scan Statistics (SatScan)

- Goal: Omit chance clusters
- Ideas: Likelihood Ratio, Statistical Significance
- Steps
 - Enumerate candidate zones & choose zone X with highest likelihood ratio (LR)
 - LR(X) = p(H1|data) / p(H0|data)
 - H0: points in zone X show complete spatial randomness (CSR)
 - H1: points in zone X are clustered
 - If LR(Z) >> 1 then test statistical significance
 - Check how often is LR(CSR) > LR(Z) using 1000 Monte Carlo simulations

Beyond SatScan: Spatial Concept/Theory-Aware Hotspots

- Geographic features, e.g., rivers, streams, roads, ...
 - Hot-spots => Hot Geographic-features, e.g., Linear Hotspots
- Spatial Theories, e.g., environmental criminology
 - Circles → Doughnut holes



Details: Significant Linear Hotspot Discovery, IEEE Transactions on Big Data, 3(2):140-153, 2017. (Summary in Proc. Geographic Info. Sc., Springer LNCS 8728, pp. 284-300, 2014.)

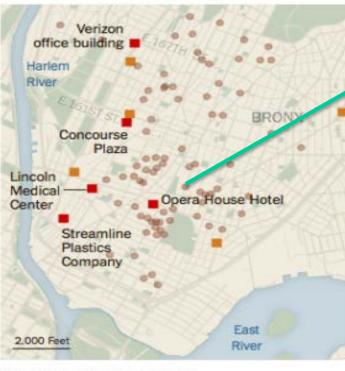
Hotel That Enlivened the Bronx Is Now a 'Hot Spot' for Legionnaires'

By WINNIE HU and NOAH REMNICK AUG. 10, 2015

Contaminated Cooling Towers

Five buildings have been identified as the potential source of the Legionnaires' disease outbreak in the South Bronx.

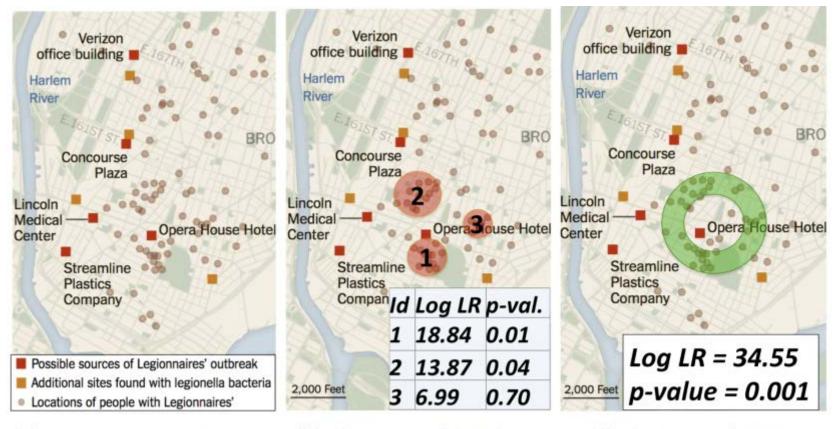
- Possible sources of Legionnaires' outbreak
 Additional sites found with legionella bacteria
- Locations of people with Legionnaires'



Source: New York Mayor's Office By The New York Times

The Opera House Hotel is at the center of the outbreak. Edwin J. Torres for The New York Times

Legionnaires' Disease Outbreak in New York



(a) Legionnaire's in (b) Output of SaTScan (c) Output of RHD New York (2015)

Details: Ring-Shaped Hotspot Detection, IEEE Trans. Know. & Data Eng., 28(12), 2016. (A Summary in Proc. IEEE ICDM 2014) (w/ E. Eftelioglu et al.)

Robust Clustering (Hotspot Detection)

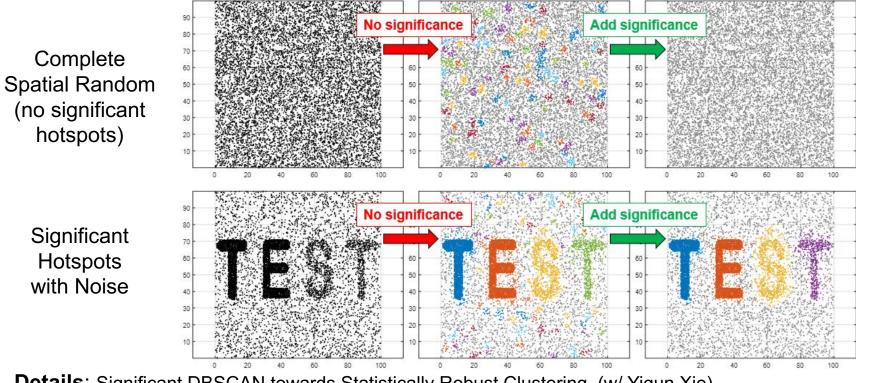
•

Problem definition

- Inputs: Collection of event locations, Test statistic; Significance level
- **Output:** Significant clusters (hotspots)
- **Constraints:** Avoid chance patterns despite non-trivial noise in data

Limitations of Related Work

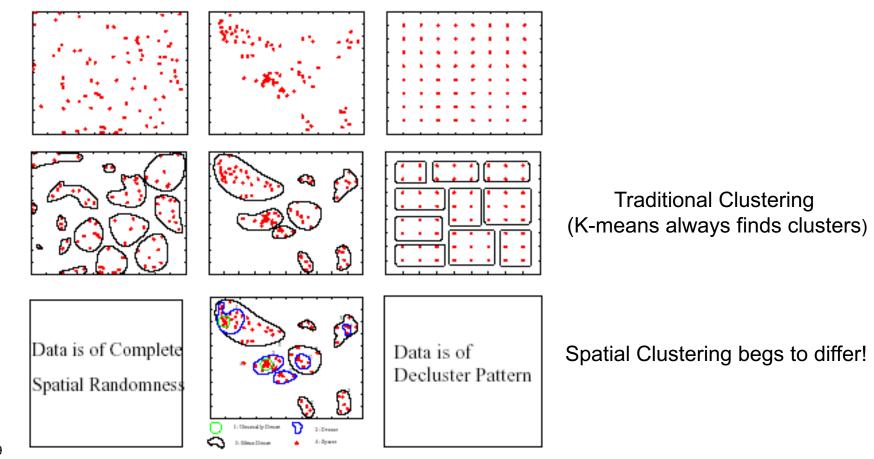
- DBSCAN cannot avoid chance patterns
- SaTScan cannot detect clusters of arbitrary shapes
- Contributions
 - Significance modeling in DBSCAN
 - A fast dual-convergence algorithm



Details: Significant DBSCAN towards Statistically Robust Clustering, (w/ Yiqun Xie), In Proc. 16th Intl. Symposium on Spatial and Temporal Databases (SSTD), 2019, ACM. (Best Paper Award)

Limitation of Traditional Clustering

- Challenge: One size does not fit all
 - Prediction error vs. model bias, Cost of false positives, ...
- Example. Clustering: Find groups of points

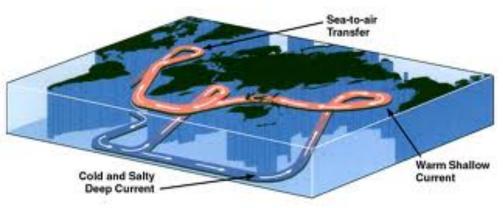


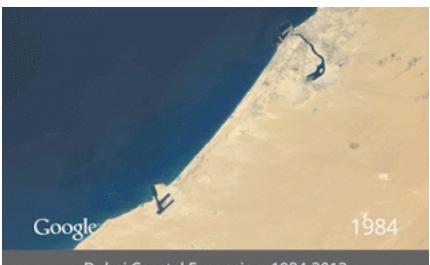
What has changed? Spatial Data Revolution

Spatial	Last Century	Last Decade
Data	Few satellites and sensors	Nano-satellites, Billions of GPS enabled smartphones
Data Access	Need special hardware and network	Cloud based repositories, e.g., Earth on AWS
Spatial Platforms	ESRI Arc/Info	SQL3/OGC, e.g., Postgis, ESRI GIS Tools for Hadoop, Google Earth Engine
Spatial Data Science	Spatial Patterns, e.g., hotspots (SatScan, ESRI Geostatistics)	 (a) Spatial Network Patterns, e.g., linear hotspots (b) Spatio-temporal (ST) patterns, e.g., Change time-series (Google Timelapse)
Spatial Visualization	Quilt: MS Terraserver Fly through: Google Earth	(a) Space time: Timelapse(b) There Dimensions

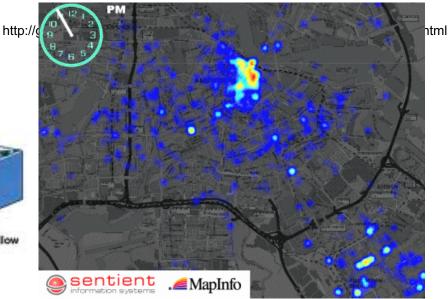
Towards Time-Travel and Depth in Virtual Globes

- Virtual globes are snapshots
- How to add time? depth?
 - Ex. Google Earth Engine, NASA NEX
 - Ex. Google Timelapse: 260,000 CPU core-hours for global 29-frame video
 - <u>https://earthengine.google.com/timelapse/</u>
 - Salt Lake, Bidhannagar, Kolkata, WB, India
 - <u>UMN, Minneapolis;airport, MN, USA</u>
- How may one convey provenance,





Dubai Coastal Expansion, 1984-2012



A UCGIS Call to Action:

Bringing the Geospatial Perspective to Data Science Degrees and Curricula

Data that are geographically referenced or contain some type of location markers are both common and of high value (e.g., data subject to state-specific policies, laws and regulations; demographic data from the census; location traces of smartphones and vehicles; remotely sensed imagery from satellites, aircraft and small unmanned aerial vehicles; volunteered geographic information; geographically referenced social media postings). A 2011 McKinsey Global Institute report estimates a value of "about \$600 billion annually by 2020" from leveraging personal location data² to reduce fuel waste, improve health outcomes, and better match products to consumer needs. Spatial data are critical for societal priorities such as national security, public health & safety, food, energy, water, smart cities, transportation, climate, weather, and the environment. For example, remotely-sensed satellite imagery is used to monitor not only weather and climate but also global crops³ for early warnings and planning to avoid food shortages.

GEOGRAPHIC INFORMATION SCIENCE

Summer 2018

One Size Data Science Does not Fit All Data!

However, spatial data presents unique data science challenges Recent court cases that address gerrymandering, the manipulation of geographic boundaries to favor a political party, offer a high-profile example. Instances of such exploitation of the modifiable areal unit problem (or dilemma) is not limited to elections since the MAUP affects almost all traditional data science methods in which results (e.g., correlations) change dramatically by varying geographic boundaries of spatial partitions. The fundamental geographic qualities of spatial autocorrelation, which assumes properties of geographically proximate places to be similar, and geographic heterogeneity, where no two places on Earth are exactly alike violate assumptions of sample independence and randomness that underlie many conventional statistical methods. Other spatial challenges include how to choose between a plurality of projections and coordinate systems and how to deal with the imprecision, inaccuracy, and uncertainty of location

A UCGIS Call to Action:

Bringing the Geospatial Perspective to Data Science Degrees and Curricula

University Consortium for PHIC INFORMATION SCIENCE

Summer 2018

Spatial Data Science Tools

measurements. To deal with such challenges, practitioners in many fields including agriculture, weather forecast, mining, and environmental science in<u>corporate geospatial data science</u>⁴ methods such as spatially-explicit models, spatial statistics⁵, geo-statistics, geographic data mining⁶, spatial databases⁷, etc.

⁴ Y. Xie et al., <u>Transdisciplinary Foundations of Geospatial Data Science</u>, *ISPRS Intl. Jr. of Geo-Informatics*, 6(12):395-418, 2017. DOI: <u>10.3390/ijgi6120395</u>.
⁵ N. Cressie, <u>Statistics for Spatial Data</u>, Wiley, 1993 (1st ed.), 2015 (Revised ed.).
⁶ H. Miller and J. Han, <u>Geographic Data Mining and Knowledge Discovery</u>, CRC Press, 2009 (2nd Ed.).
⁷ S. Shekhar and S. Chawla, <u>Spatial Databases: A Tour</u>, Prentice Hall, 2003.

A UCGIS Call to Action:

Bringing the Geospatial Perspective to Data Science Degrees and Curricula

GEOGRAPHIC INFORMATION SCIENCE

Summer 2018

Summary : One size data science does not fit all

- Spatial Data are ubiquitous & important
- Traditional Data Science Tools are inadequate – Gerrymandering, Spatial Auto-correlation, ...

• Ask:

- Spatial Data Science Methods
- Spatial Statistics, Spatial Data Mining, SDBMS, ...

References : Surveys, Overviews

- Spatial Computing, MIT Press (Essential Knowledge Series), 2020. (ISBN: 9780262538046).
- Spatial Computing (<u>html</u>, <u>short video</u>, <u>tweet</u>), Communications of the ACM, 59(1):72-81, January, 2016.
- Transdisciplinary Foundations of Geospatial Data Science (<u>html</u>, <u>pdf</u>), ISPRS Intl. Jr. of Geo-Informatics, 6(12):395-429, 2017. (doi:10.3390/ijgi6120395)
- <u>Spatiotemporal Data Mining: A Computational Perspective</u>, ISPRS Intl. Jr. on Geo-Information, 4(4):2306-2338, 2015 (DOI: 10.3390/ijgi4042306).
- Identifying patterns in spatial information: a survey of methods (<u>pdf</u>), <u>Wiley</u> <u>Interdisciplinary Reviews: Data Mining and Knowledge Discovery</u>, 1(3):193-214, May/June 2011. (DOI: 10.1002/widm.25).
- <u>Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data</u>, IEEE Transactions on Knowledge and Dat Mining, 29(10):2318-2331, June 2017. (DOI: 10.1109/TKDE.2017.2720168).
- Parallel Processing over Spatial-Temporal Datasets from Geo, Bio, Climate and Social Science Communities: A Research Roadmap. IEEE BigData Congress 2017: 232-250.
- Spatial Databases: Accomplishments and Research Needs, IEEE Transactions on Knowledge and Data Engineering, 11(1):45-55, 1999.