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Growing Computing Engagement with Climate
● NSF Workshop on Sustainable Computing for Sustainability, April 16th-17th, 2024.
● Communications of the ACM (CACM)
● upcoming Special issue on Special Issue on Sustainability and Computing
● NSF on Chien’s Grand Challenge for Sustainability, CACM May 2023
● Editorial: Computing Grand Challenge for Sustainability, CACM, Oct. 2022

● Fall 2023-onwards: CRA Workgroup on Socially Responsible Computing
● 2022 CRA Snowbird Panel on Climate Smart Computing, July 2022
● Computing and Climate, Guest Editor’s Introduction to the Special Issue of IEEE Computing 

in Sc. & Eng., 17(6):6-8, Nov.-Dec. 2015. 10.1109/MCSE.2015.114.

https://edas.info/web/nsf-wscs24/themes.html
https://people.cs.uchicago.edu/~aachien/workshops/CACM-Sust/
https://cacm.acm.org/opinion/nsf-on-chiens-grand-challenge-for-sustainability/
https://cacm.acm.org/opinion/computings-grand-challenge-for-sustainability/
https://cra.org/committees/
https://cra.org/events/2022-cra-conference-at-snowbird/
https://ieeexplore.ieee.org/document/7310909
https://ieeexplore.ieee.org/document/7310909/
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7310908
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7310908
https://doi.org/10.1109/MCSE.2015.114


What is Climate-Smart Computing?
● NSF on Chien’s Grand Challenge for Sustainability, Comm. of the ACM May 2023

… advances in computing technology to understand and analyze the climate ecosystem, build 
resilience to climate-driven extreme events, and mitigate and adapt to climate change. 

These techniques include:
• Smart sensor-based networks or self-adaptive robots for collecting valuable data in real time 

and in extreme conditions;
• Communication networks resilient to natural disasters;
• Advanced computing infrastructure for efficient storage and aggregation of the data, and high-

speed, heterogeneous computing resources that can handle enormous volumes of climate-
related data and large complex climate models;

• State-of-the-art, data-driven computational modeling and high-precision simulation for 
enabling deeper understanding and new discoveries;

• New climate informatics (including AI) techniques to provide more advanced analysis and 
prediction capabilities; and

• Human-centered computing approaches for understanding and visualizing key challenges, 
impacts, and solutions.

https://cacm.acm.org/opinion/nsf-on-chiens-grand-challenge-for-sustainability/


Global Engagement with Climate
● To avert worst impacts of climate 

change
● Paris Agreement

○ Net zero emissions by 2050
● 70 countries

○ China, EU, U.S.
○ Short video 

[1] Climate Change 2022: Mitigation of Climate Change, IPCC 6th Assessment Report, 2022. Short video 
.  [2] U.S. Executive Office of the President, The long-term strategy of the united states: Pathways to net-zero 
greenhouse gas emissions by 2050., (2021).

[1] 
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U.S. pathway to net zero [2]

https://youtu.be/WFSP-aoqzU4
https://www.ipcc.ch/report/ar6/wg3/about/how-to-cite-this-report
https://youtu.be/WFSP-aoqzU4


Climate Smart Computing Activities
Service

● Co-chair: CRA Workgroup on Socially Responsible Computing, Fall 2023 onwards
● Co-chair, 2022 CRA Snowbird Panel on Climate Smart Computing, July 2022
● Co-Editor, Computing and Climate, Guest Editor’s Introduction to the Special Issue of 

IEEE Computing in Sc. & Eng., 17(6):6-8, Nov.-Dec. 2015. 10.1109/MCSE.2015.114.

Projects
• NSF 2118285: HDR Institute: HARP- Harnessing Data and Model Revolution in the Polar Regions

• 1901099 : Spatio-temporal Informatics for Transportation Science 
• 1916518:   Midwest Big Data Hub: Building Communities to Harness the Data Revolution

• NIFA 2023-67021-39829: AI-CLIMATE (AI Institute for Climate-Land Interactions, Mitigation, 
Adaptation, Tradeoffs and Economy)

• 2021-51181-35861: Winterturf: A holistic approach to understanding the mechanisms and 
mitigating the effects of winter stress on turfgrasses in northern climates

• USDOE EERE CX-020456: Improving the Freight Productivity of a Heavy-Duty, Battery Electric 
Truck, (FOA DE-FOA-0002044 via Volvo Technology of America LLC), (with W. Northop)

https://cra.org/committees/
https://cra.org/events/2022-cra-conference-at-snowbird/
https://ieeexplore.ieee.org/document/7310909
https://ieeexplore.ieee.org/document/7310909/
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7310908
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7310908
https://doi.org/10.1109/MCSE.2015.114


Key Messages
• Climate change 

–  A key societal challenge of our generation
– And a major opportunity for computing

• Ask for computing community
– Researcher: Engage with climate topics
– Educator: Include climate topics in courses and curricula 
– Sponsors: Nurture approaches to overcome challenges

• Rest of the presentation
– Share personal stories (primarily climate informatics)

• Climate is not just an application of Computer Sc.
• It provides rich opportunities to advance and transform Computer Sc.

– Learn about pervasive computing challenges and opportunities from you



Outline
1. Motivation
2. Share personal stories

a. Climate Resilience Projects
i. Evacuation Route Planning
ii. Shelter allocation

b. Climate Understanding, Mitigation, Adaptation Projects

3. Conclusions and Asks

7



Climate-Smart Computing Problem: Large Scale Evacuation

"We packed up Morgan City residents to evacuate in the 
a.m. on the day that Andrew hit coastal Louisiana, but in 
early afternoon the majority came back home. The traffic 
was so bad that they couldn't get through Lafayette."   
Mayor Tim Mott, Morgan City, Louisiana    
( http://i49south.com/hurricane.htm )

Florida, Lousiana 
(Andrew, 1992)

( www.washingtonpost.co
m)

( National Weather Services) ( National Weather Services)

( FEMA.gov)
I-45 out of Houston

Houston 
(Rita, 2005)Climate change is increasing frequency and 

severity of extreme events, e.g., Hurricanes

Hurricane: Andrews, Rita
n  Traffic congestions on all highways
n e.g. 100-mile congestion (TX)
n Great confusions and chaos



Evacuation Route Selection: Problem Statement
Given
• A transportation network,  a directed graph G = ( N, E ) with 

– Capacity constraint for each edge and node
– Travel time for each edge

• Number of evacuees and their initial locations   
• Evacuation destinations 
Output: Evacuation plan consisting of a set of origin-destination routes

– and a scheduling of evacuees on each route.
Objective: Minimize evacuation egress time 

– time from start of evacuation to last evacuee reaching a destination
Constraints
• Route scheduling should observe capacity constraints of network 
• Reasonable computation time despite limited computer memory
• Capacity constraints and travel times are non-negative integers
• Evacuees start from and end up at nodes



Why is this problem hard computationally?
Intuition:

– Spread people over space and time
– Multiple paths + pipelining over those

A. Flow Networks
OR = Population / (Bottleneck Capacity of Transport Network)
If ( OR <=1 )  { shortest path algorithms, e.g. A* }
Else if ( OR à infinity ) { Min-cut max-flow problem }
Else { Computationally hard problem ! }

B. Spatio-temporal Networks 
– Violate stationary assumption 

• behind shortest path algorithms, e.g. A*, Dijktra’s
• Optimal sub-structure and dynamic programming 



Summary of Related Works & Limitations

B. Operations Research: Time-Expanded Graph + Linear Programming 
   - Optimal solution, e.g. EVACNET (U. FL),  Hoppe and Tardos (Cornell U).
   Limitation: - High computational complexity => Does not scale to large problems
   - Users need to guess an upper bound on evacuation time 

A. Capacity-ignorant Approach
  - Simple shortest path computation, e.g. A*, Dijkstra’s,  EXIT89 (Natl. Fire Prot. Asso.)
  Limitation: Poor solution quality as evacuee population grows

> 5 days108 min2.5 
min

0.1 
minEVACNET Running Time

50,0005,00050050Number of Nodes

C. Transportation Science: Dynamic Traffic Assignment  
   -  Game Theory: Wardrop Equilibrium, e.g.  DYNASMART (FHWA), DYNAMIT(MIT) 
   Limitation: Extremely high compute time; Also evacuation not an equilibrium phenomena



Proposed Approach

• Key Ideas
A. Time Aggregated Graph (TAG) to reduce data size
B. Precompute Earliest arrival time-series
C. Capacity Constraint Route Planner to pull ideas together



A. Time Aggregated Graph (TAG) to reduce data size
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14

Storage Cost Comparison

Dataset # Nodes # Edges
(MPLS -1/2 mi) 111 287
(MPLS -1 mi) 277 674
(MPLS - 2 mi) 562 1443

(MPLS - 3 mi) 786 2106

Benchmark Maps: Minneapolis 
[1/2, 1, 2, 3 miles radii]

Trend: Proposed approach (TAG) better than 
alternatives (e.g.,TEG) on storage overhead!
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B. Precompute Earliest arrival time-series
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Challenge: To wait or not to wait? Ex. N4 to N5 with start time 3 in leftmost graph
Approach: Pre-compute earliest arrival time-series



C. Capacity Constraint Route Planner to pull ideas together

n  Time-series attributes
    Available_Node_Capacity (Ni , t) = #additional evacuees that can stay at node Ni at time t 
    Available_Edge_Capacity (Ni -Nj , t) = #additional evacuees that may travel via edge Ni -Nj at time t
n Generalize shortest path algorithms to honor capacity constraints
n Each iteration 
n Generates route and schedule for a group of evacuee closest to destination
n Make reservations by updating node/edge capacities



Comparative Evaluation of SOTA (NETFLO) and Proposed Method (CCRP)

Experiment 1: Effect of Number of Evacuees
Setup: fixed network size = 5000 nodes, fixed number of source nodes = 2000 nodes, vary number of evacuees
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• CCRP produces high quality solution, solution quality drops slightly as number  of evacuees grows.
• Run-time of CCRP is less than 1/3 that of NETFLO.
• CCRP is scalable to the number of evacuees. 



FoxTV newsclip (5-minutes), Disaster Area Evacuation Analytics 
Project 

  

https://drive.google.com/file/d/1jVJi9THwLB6ft7vgWnhCss8XrK67atZT/view?usp=share_link
https://drive.google.com/file/d/1jVJi9THwLB6ft7vgWnhCss8XrK67atZT/view?usp=share_link
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Makkah Hajj Shelter Allocation

Details: Intelligent Shelter Allotment for Emergency Evacuation Planning: A Case 
Study of Makkah, Intelligent Systems, IEEE, 30(5):66-76, Sept.-Oct., 2015.

Context: Flash floods require evacuation 
of Tent city on to the Jamarat bridge

Problem Formulation:
  Given: Graph G = (nodes, edges) 
1) Edge travel-time and Capacity/unit-time
2) Evacuee map, Shelters with capacities 
  Find: Allot shelters to evacuees 
  Objective: Minimize evacuation time
  Constraints: avoid movement conflicts 
(Stampede risk)

Note: NP-hard. 

Crowd walking from tent city to 
Jamarat complex 

Jamarat Complex



(a) NES Allotment (b) CCRP Allotment (c) CARES Allotment

SOTA(NES) arrival time Proposed Method 
(CARES) arrival time Crowd density and walking 

speed model of Hajj pilgrims

Comparative Evaluation

Details: K. Yang et al.. "Intelligent shelter allotment for emergency evacuation planning: A case study of 
makkah." IEEE Intelligent Systems 30, no. 5 (2015): 66-76.

Trend: Proposed approach (CARES) gets evacuees to shelter faster than SOTA 
(NES)



Future Directions
• Data Availability

– Estimating evacuee population, available transport capacity
– Pedestrian data: walkway maps, link capacities based on width

• Traffic Eng. 
– Link capacity depends on traffic density
– Modeling traffic control signals, ramp meters, contra-flow, …

• Evacuee Behavior
– Unit of evacuation: Individual or Household
– Heterogeneity: by physical ability, age, vehicle ownership, language, …

• Policy Decisions
– How to gain public’s trust in plans? Will they comply? 
– When to evacuate? Which routes? Modes? Shelters? Phased evacuation? 
– Common good with awareness of winners and losers due to a decision

• Science
– How does one evaluate an evacuation planning system ?
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NSF Climate Expedition
• NSF Expedition: Understanding Climate Change: A Data-Driven Approach (2010-2016)
• Aims: Data-driven approach to complement physics-based models to improve 

understanding of climate change and its impacts
• Partners: U Minnesota (lead), NASA, NCAT, NCSU, ORNL, U Tennessee
• Challenges

• Spatial Auto-correlation and variability
• Temporal non-stationarity and lags, 
• Physics-constraints, …

• Research
• Spatial Classification and Prediction Models
• Relationship Mining
• Complex Networks
• High Performance Computing

24



Classification Models and Spatial Auto-correlation

(a) aerial photo (b) aerial photo (c) true classes (d) DT prediction 
(Salt n Pepper 

Noise)

wetland dry land
Input: Output:

(e) SDT prediction

DT: decision tree
SDT: spatial decision tree

Training samples: upper half
Test samples: lower half
Spatial neighborhood: maximum 11 pixels by11 pixels

Details: Focal-Test-Based Spatial Decision Tree Learning. IEEE Trans. Knowl. Data Eng. 27(6): 1547-
1559, 2015 (A summary in Proc. IEEE Intl. Conf. on Data Mining, 2013).(w/ Z. Jiang et al.

Challenge: Climate data violates ubiquitous i.i.d. assumption
Symptom: Salt and Pepper noise

http://dblp.uni-trier.de/db/journals/tkde/tkde27.html


Proposed Approach: Spatial Decision Tree

ID f1 f2 Γ1 class 
A 1 1 green 
B 1 1 green 
C 1 3 green 
D 3 2 red 
E 3 2 red 
F 3 2 red 
G 1 1 green 
H 3 1 green 
I 1 3 green 
J 3 2 red 
K 1 2 red 
L 3 2 red 
M 1 1 green 
N 1 1 green 
O 1 3 green 
P 3 2 red 
Q 3 2 red 
R 3 2 red 

Traditional decision tree Spatial decision tree 

Inputs: table of records Inputs:  
•  feature maps, class map 
•  Rook neighborhood ID f1 f2 Γ1 class 

A 1 1 green 
B 1 1 green 
C 1 3 green 
G 1 1 green 
I 1 3 green 
K 1 2 red 
M 1 1 green 
N 1 1 green 
O 1 3 green 
D 3 2 red 
E 3 2 red 
F 3 2 red 
H 3 1 green 
J 3 2 red 
L 3 2 red 
P 3 2 red 
Q 3 2 red 
R 3 2 red 

1 1 1 3 3 3 
1 3 1 3 1 3 
1 1 1 3 3 3 
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ID f1 f2 Γ1 class 
A 1 1 1 green 
B 1 1 0.3 green 
C 1 3 0.3 green 
G 1 1 0.3 green 
I 1 3 0 green 
K 1 2 -1 red 
M 1 1 1 green 
N 1 1 0.3 green 
O 1 3 0.3 green 
D 3 2 0.3 red 
E 3 2 0.3 red 
F 3 2 1 red 
H 3 1 -1 green 
J 3 2 0 red 
L 3 2 0.3 red 
P 3 2 0.3 red 
Q 3 2 0.3 red 
R 3 2 1 red 

O 
K 

C 
G 

A 
B 

I 

M D 
E 

L 

P 

F 
J 

Q 
R 

N 

K 
O 
H 

1 1 1 3 3 3 
1 3 1 3 1 3 
1 1 1 3 3 3 



Traditional Spatial

Neural Networks Convolutional Neural Networks

Decision Trees Spatial Decision Trees

Modeling Spatial Auto-correlation
• Traditional, e.g., Linear Regression  (LP) with Logit or Probit, Bayes Classifier, …

• Semi-Spatial: LR with auto-corr. Regularizer

• Spatial

• Spatial autoregressive model (SAR)

• Markov random field (MRF) based Bayesian Classifier

eb += Xy

)Pr(
)Pr()|Pr()|Pr(

X
CCXXC ii

i =

ebr ++= XyWy

),Pr(
)|,Pr()Pr(),|Pr(
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iNi
Ni CX
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Computational Problem: Parameter Estimation
Name Model

Classical Linear Regression

Spatial Auto-Regression

εxβy +=

εxβWyy ++= ρ

framework  spatialover matrix  odneighborho -by- : 
parameter n)correlatio-(auto regression-auto spatial  the: 

nnW
r

• Maximum Likelihood Estimation

• Computing determinant of large matrix is a hard (open) problem!
– size(W) is quadratic in number of locations/pixels.
– Typical raster image has Millions of pixels
– W is sparse but not banded.

Details: A parallel formulation of the spatial auto-regression model for mining large geo-spatial datasets, 
SIAM Intl. Workshop on High Perf. and Distr. Data Mining, 2004. (with B. Kazar)

SSEnnL ----=
2
)ln(

2
)2ln(ln)ln(

2sp
rWI



Spatial Heterogeneity
• Knowledge of location can improve land-cover and object recognition

– Q? Which pictures show snow?

• Coarse Satellite Imagery (e.g., 30m pixels) 
– More effective for large mono-crop farms the small mixed-crop plots

• However, Convolutional Neural Networks does not model geographic heterogeneity.

Snow SnowSalt Marsh
(Runn of Kutch, Gujarat, India)

(a) (b) (c)



Modeling Spatial Heterogeneity: GWR

• Geographically Weighted Regression (GWR)
• Goal: Model spatially varying relationships 

• Example:

 Where                   are location dependent

'' eb += Xy
'' and eb

Source: resources.arcgis.com



Spatial Variability Aware Neural Networks (SVANN)

A Neural Network (NN) SVANN

0.3

0.5
0.8

0.6

0.3

0.5

• Each NN parameter is a map i.e., a function of location 
• Similar to Geographically Weighted Regression

• Evaluation: 
• Urban Garden Detection across Hennepin County, MN and Fulton County, GA.
• SVANN outperformed OSFA by 14.34% on F1-scores. 

Details:Towards Spatial Variability Aware Deep Neural Networks (SVANN), ACM Transactions on Intelligent Systems and Technology, 
12(6):1-21, Dec. 2021. (A Summary in ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems, 2020. 
(Best Paper Award)

https://dl.acm.org/toc/tist/2021/12/6
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• Goals
–Develop visions, Identify gaps 
–Develop a research agenda

• At USDA NIFA, Oct. 5th-6th, 2015
• Co-organizers: Shekhar, Mulla, Schmoldt
• URL: www.spatial.cs.umn.edu/few

• 55 Participants

• Details: NSF Workshop to Identify Interdisciplinary Data Science Approaches and Challenges to 
Enhance Understanding of Interactions of Food Systems with Energy and Water Systems , 
Computing Research News (ISSN 1069-384X), Computing Research Asso., 27(10), Nov. 2015.

NSF INFEWS Data Science Workshop (Oct. 2015)

Food Energy Water DataSc.

14 10 11 20

Gov. Aca. Industry

26 24 5

http://www.spatial.cs.umn.edu/few
http://cra.org/crn/2015/11/nsf-workshop-to-identify-interdisciplinary-data-science-approaches-and-challenges-to-enhance-understanding-of-interactions-of-food-systems-with-energy-and-water-systems/
http://cra.org/crn/2015/11/nsf-workshop-to-identify-interdisciplinary-data-science-approaches-and-challenges-to-enhance-understanding-of-interactions-of-food-systems-with-energy-and-water-systems/


Collaborative Geo-design of a Watershed



Details: Y. Xie, B. Runck, S. Shekhar, L. Kne, D. Mulla, N. Jordan, and P. Wringa, Collaborative Geodesign and Spatial 
Optimization for Fragment-Free Land Allocation,  ISPRS Int. J. Geo-Inf. 2017, 6(7), 226; https://doi.org/10.3390/ijgi6070226.

Manual 
Geodesign

Multi-objective 
Optimization Algorithms

Scalable Algorithms: Ex. 7-mile Creek Watershed 

https://www.mdpi.com/2220-9964/6/7/226
https://www.mdpi.com/2220-9964/6/7/226
https://doi.org/10.3390/ijgi6070226


Computing Challenge: Fragmentation-Free Spatial Allocation
Inputs: A grid partition, A set of choices

A profit and cost value for each (choice, grid cell)
 Output: A tile-partition of grid, Choice assignments on tiles
 Objective: maximize profit
 Hard constraints: 

 Total cost is smaller than budget
 Each tile satisfies a minimum area & width

Ex. Agricultural land design

Challenge: APX-hard
SOTA (e.g., multiple-choice knapsack) limitations: fragmentation 
 

[1] Y. Xie et al. Spatially-constrained Geo-design optimization for improving 
agricultural sustainability. AAAI-17 Workshop on AI and OR for social good. 2017.
[2] Y. Xie et al., FF-SA: Fragmentation-Free Spatial Allocation. In: Advances in 
Spatial and Temporal Databases, 2017.
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AI Institute for Climate-Land Interactions, Mitigation, Adaptation, 
Trade-Offs, and Economy, NIFA 2023-03616,  $20M, 6/23-5/28. 

• Partners: U Minnesota (lead), Colorado St. U, Cornell U, 
Delaware St. U, NCSU, Purdue U, ISRIC

• URL: cse.umn.edu/aiclimate 

DETAILS: U of M to lead new AI Institute focusing on climate-smart agriculture 
and forestry, UMN News Release, May 4, 2023

Curb Climate-Change with AI

http://cse.umn.edu/aiclimate
https://twin-cities.umn.edu/news-events/u-m-lead-new-ai-institute-focusing-climate-smart-agriculture-and-forestry
https://twin-cities.umn.edu/news-events/u-m-lead-new-ai-institute-focusing-climate-smart-agriculture-and-forestry


AI-CLIMATE
AI Institute for Climate-Land Interactions, Mitigation, Adaptation, Tradeoffs and Economy

• • Innovations: 
 ◦ Better data (e.g.,  Finer-resolution soil moisture map)
 ◦ Refined tools for climate-smart agriculture and forestry land management decisions
 ◦ More accurate models of soil organic-matter and greenhouse gas emissions
 ◦ Faster algorithms for multi-objective optimization and science-guided machine learning

• Impacts: 
 ◦ Strengthen AI for Science (e.g., honor physical laws)
 ◦ Mitigation: Accelerate Carbon-sequestration in farms and forests
 ◦ Adaptation: Drought resilience via healthier soil
 ◦ Economy: Empower Carbon markets by better carbon-accounting
 ◦ Expand and diversity AI-ready climate-smart agriculture and forestry workforce



Outline
1. Motivation
2. Share personal stories

a. Climate Resilience Projects
b. Climate Understanding, Mitigation, Adaptation Projects

3. Conclusions and Asks
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Conclusions and Key Messages
• Climate change 

–  A key societal challenge of our generation
– And a major opportunity for computing

• Ask for computing community
– Researcher: Engage with climate topics
– Educator: Include climate topics in courses and curricula 
– Sponsors: Nurture approaches to overcome challenges

• Rest of the presentation
– Shared personal stories (primarily climate informatics)

• Climate is not just an application of Computer Sc.
• It provides rich opportunities to advance and transform Computer Sc.

– Looking forward to learning about pervasive computing challenges and opportunities!
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Climate Footprint of Computing
• Source: Jens Malmodin et al. ICT sector electricity consumption and greenhouse gas 
emissions - 2020 outcome, Telecommunications Policy, 2024, 102701, ISSN 0308-5961, 
https://doi.org/10.1016/j.telpol.2023.102701

• Highlights (2020 Data)
–ICT ∼4% of global electricity consumption
–ICT 1.4% of global GHG emissions 
–User devices: 57% of ICT GHG emissions
–Embodied device: 36% of ICT emissions 

https://doi.org/10.1016/j.telpol.2023.102701
https://doi.org/10.1016/j.telpol.2023.102701
https://doi.org/10.1016/j.telpol.2023.102701


(Spatial) Computing for Mitigation

Detail: B. Jayaprakash et al., Towards Carbon-Aware Spatial Computing: Challenges and Opportunities, 
NSF I-GUIDE Forum,  Columbia U, June 2023 10.5703/1288284317678. ( youtube video presentation)

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1008&context=iguide
10.5703/1288284317678
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjqhei6ifGEAxU8AfsDHbPiDjQQwqsBegQIDRAG&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbrRlBF1t0-M&usg=AOvVaw1kvu37bXoNC0ZcGatWykOn&opi=89978449


Reducing Emissions: Eco-routing  

Details: 1. Yan Li, Mingzhou Yang, Matthew Eagon, Majid Farhadloo, Yiqun Xie, Shashi Shekhar, and William Northrop. "Eco-PiNN: A Physics-informed 
Neural Network for Eco-toll Estimation." submitted to the 2023 SIAM International Conference on Data Mining (SDM). (Under review)
2. Y. Li, P. Kotwal, P. Wang, Y. Xie, S. Shekhar, and W. Northrop, Physics-guided Energy-efficient Path Selection Using On-board Diagnostics Data, 
ACM/IMS Transactions Data Science 1(3):1-28, Article 22, Oct. 2020. (Initial results appeared in Proc. ACM SIG-Spatial, 2018).

● Goal: Reduce emissions and energy needs
● Big Data: Trajectories (GPS + On Board Diagnostics)
● Collaborators: UPS, Workhorse, ARPA-E, NSF, …
● Oct. 2021: Google Maps supports Eco-Routing

Google Ecorouting

https://doi.org/10.1145/3406596
https://doi.org/10.1145/3406596


Eco-PiNN: A Physics-informed Neural Network for Eco-toll Estimation

Details: Y. Li et al,  "Eco-PiNN: A Physics-informed Neural Network 
for Eco-toll Estimation. SIAM Intl. Conf. on Data Mining 2023.

Problem: Estimate road segment’s cost for Eco-routing 
Challenges: Data paucity, vehicle physics, motion context
Contributions: Eco-PiNN
● A physics-informed Neural Network
● Physics included in Decoder and Regularization

An example of Google Maps’ eco-
routing (From UMN to MSP Airport)


