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Abstract—Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow

network configuration (that is, ideal direction for each edge) to minimize the evacuation time. Contraflow lane reversal is considered a

potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (for example,

hurricanes). This problem is computationally challenging because of the very large search space and the expense of calculating the

evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of a

contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion, and scalability. We formally

define the contraflow problem based on graph theory and provide a framework of computational structure to classify our approaches. A

Greedy heuristic is designed to produce high-quality solutions with significant performance. A Bottleneck Relief heuristic is developed

to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real-world

data sets. Experimental results show that our contraflow approaches can reduce the evacuation time by 40 percent or more.

Index Terms—Contraflow, optimization, graph algorithms, heuristics design.
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1 INTRODUCTION

EFFICIENT evacuation route planning is currently an issue
of major importance due to the increasing risks from

both terrorist attacks and natural disasters. For transporta-
tion system planners, the main issue has been the severe
traffic jams during the evacuation process. In the aftermath
of Hurricanes Katrina and Rita in 2005, the transportation
community observed the need for increased evacuation
route capacity, as well as a more accurate estimate of the
evacuation time [29]. Contraflow, or lane reversals, has been
discussed as a potential remedy to solve such a tremendous
congestion by increasing the outbound evacuation route
capacity [41], [42]. Although contraflow is primarily
important for evacuations, its applications are not limited
to emergencies. Other examples of contraflow include the
reversals of the two center lanes of the highway system in
Washington, D.C., during morning and evening rush hours
[7], [32] and road network reconfiguration after football
games.

The contraflow problem for evacuation can be defined as
follows: Given 1) a transportation network with edges, each
having a capacity and a travel time, and 2) source and
destination junctions, we find a reconfigured network
identifying the ideal direction for each edge to minimize
the evacuation time by reallocating the available capacity.

Finding the optimal contraflow network configuration is
considerably challenging because we may have to enumer-
ate combinations of edge (that is, road segment) directions
and compare those combinations by calculating the evacua-
tion time. The task is NP-complete, and its proof is shown in
this paper. In addition, it takes considerable time to
evaluate each contraflow configuration candidate, taking
the dynamics of traffic flow into account. Thus, we need to
consider the balance between model realism and prohibi-
tive computing requirements engendered by the exhaustive
search space and the demands of the realistic modeling of
traffic flow.

Hamza-Lup et al. [22] proposed algorithms to tackle the
contraflow problem. Their approach is based on evacuation
modeling with a single source, thus leading to finding the
optimal paths to destinations and overlaying them. This
planning approach does not take the overall capacity of the
road network into account. Tuydes and Ziliaskopoulos
designed a mesoscopic contraflow network model [39]
based on a dynamic traffic assignment method. Their
approach is subject to the problem of mathematical
optimization, however, and thus, they have not shown
scalable experiments. In addition, their Tabu-based heur-
istic approach [40] is a search-based iterative optimization
technique. Although the Tabu search significantly reduces
the search space to be explored, the search space may still
be too large in cases of very large spatial networks due to
the combinatorially increasing number of candidate net-
works reconfigured by contraflow.

To address the challenges of evacuation route planning,
we introduce the parameter named Overload Degree,
which classifies the computational structure of the contra-
flow reconfiguration problem by the ratio of the number of
traveling units (for example, evacuees) to the bottleneck
capacity (that is, minimum cut in graph theory) of the given
network. We propose heuristics to determine the ideal
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direction of edges in transportation networks for evacua-
tion. The Greedy heuristic runs an evacuation route planner
to determine the condition of congestion on a given original
configuration and flips highly congested road segments in a
greedy manner. The Bottleneck Relief heuristic identifies
the bottleneck of a given network and increases the
bottleneck capacity by contraflow.

We evaluated our approaches using analytical and
experimental validation methodologies. In the experimental
evaluation, we prepared real-world data sets to test the
performance and scalability of the approaches. Experimen-
tal results and case studies show that the proposed
approaches can reduce the evacuation time by 40 percent
or more. In addition, we present findings with important
implications for planners and first responders as they
prepare contraflow evacuation schemes.

1.1 Motivation

Evacuation route planning has become a topic of critical
importance due to the September 11 terrorist attacks and
recent catastrophic hurricanes that required large-scale
evacuations across the US. In 2005, two major hurricanes,
Katrina and Rita, hit the southeastern part of the US and
caused severe damage across several coastal states [36].
Especially during the Rita evacuation, a greater number of
evacuees than expected followed the evacuation order with
their personal vehicles. The following are quoted observa-
tions [29] of the traffic problems that occurred during the
Rita evacuation:

. Congestion problem. “An estimated three million
people evacuated the Texas coast, creating colossal,
100-mile-long traffic jams that left many stranded
and out of fuel. Drivers heeding the call to evacuate
Galveston Island and other low-lying areas took four
to five hours to cover the 50 miles to Houston, and
from there roadway conditions were even worse,
with traffic crawling at just a few miles per hour....
After crawling only 10 or 20 miles in nine hours,
some drivers turned around to take their chances at
home rather than risk being caught in the open when
the hurricane struck.”

. Contraflow problem. “High-occupancy vehicle
(HOV) lanes went unused, as did many inbound
lanes of highways, because authorities inexplicably

waited until late Thursday to open some up.... As
congestion worsened, state officials announced that
contraflow lanes would be established on Interstate
Highway 45 (Fig. 1b), US Highway 290, and Interstate
Highway 10. But by midafternoon, with traffic
immobile on US Highway 290, the plan was dropped,
stranding many and prompting others to reverse
course. “We need that route so resources can still get
into the city,” explained an agency spokeswoman.”

During the Rita evacuation, transportation analysts [29]

were able to observe the inefficient use of road capacity and

the effects from the ill-planned contraflow, which resulted

in disorganized movement of people. They listed the failure

to use contraflow lanes and road shoulders for evacuation

traffic as one of the planning problem lessons learned from

Katrina and Rita.
Although it is a subject of recent dramatic interest,

contraflow has other routine but important applications.

One application is the use of reversible lanes to deal with

morning and evening peak commuter time. Washington

State has been operating reversible two-lane roadways for

peak period HOV-3 vehicles [7], [32]. The reversible lane

system has been reported to provide significant savings in

travel time. A second application of contraflow is common

during special events when all lanes are reversed to

accommodate outbound traffic at the end of a sporting

event or concert. This is a special case of contraflow, having

a single source with multiple destinations.

1.2 Related Work and Our Contribution

The material and literature on evacuations in general and

the contraflow problem in particular have been published

in various domains including social and behavioral

sciences, transportation, and mathematics [11], [12]. A

survey [42] of evacuation issues and contraflow revealed

that transportation planners have no recognized standards

or guidelines for the design, operation, and location of

contraflow segments. Many states threatened by hurricanes

and considering contraflow plans are dependent on past

evacuation experiences. Litman [29] identified the planning

problems of Hurricanes Katrina and Rita and specifically

criticized unplanned contraflow orders and the failure to

use contraflow lanes.
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Fig. 1. Before contraflow, the northbound lanes of Interstate Highway 45 in Houston were jammed during the Hurricane Rita evacuation. After

contraflow, the northbound traffic is smoother on both sides of Interstate Highway 45. (Source: wfaa.com). (a) Before contraflow. (b) After contraflow.



Past papers and Department of Transportation reports
[15], [37], [41], [42] have mainly tackled the managerial and
operational aspects of contraflow, such as signal control,
merging, and cost. When planners design a network
configuration for evacuation scenarios, they mainly depend
on empirical guesses. Such handcrafted contraflow plans
have revealed that they are neither efficient for finding
critical road segments of contraflow nor flexible for
accommodating various variables [13], [14].

Hamza-Lup et al. [22] introduced two different contra-
flow algorithms from a computer science perspective: one
based on a multicast routing problem and the other based
on breadth-first graph traversal. These algorithms can
handle only a single coordinated incident due to the
conflicts of multiple optimal paths that occur in multiple-
source and multiple-destination evacuation models. The
authors did not clearly describe the use of different link
capacities. Thus, their approach is not effective when the
number of traveling units is finite, road capacities are
constrained, specific destination nodes are prescribed, or
evacuees are spread over many locations.

Tuydes and Ziliaskopoulos [39] proposed a mesoscopic
contraflow network model based on a dynamic traffic
assignment method. They formulated capacity reversibility
using a mathematical programming method. The discre-
tized hypothetical network required to solve the traffic
assignment problem, however, hindered large-scale net-
work scenarios from running in their framework. They also
tried a Tabu-based heuristic approach [40] to address
capacity reversibility optimization. Their solutions required
a considerable number of iterations, thus limiting their
input to a small network.

Theodoulou and Wolshon [38] used CORSIM micro-
scopic traffic simulation to model the freeway contraflow
evacuation around New Orleans. With the help of the
microscale traffic simulator, they were able to suggest
alternative contraflow configurations at a detailed level.
However, the microscopic simulation model requires labor-
intensive network coding and significant runtime for each
scenario, making it difficult to take advantage of spatial
databases or easily compare alternative configurations.
Evacuation route planning with other microscopic traffic
simulation (for example, MITSIMLab [25]) has shown
similar limitations.

Our contributions. Previously, Kim and Shekhar [28]
proposed two heuristics for contraflow planning. One
heuristic, named Flip High Flow Edge (FHFE), is based on
a greedy algorithm with a flow history of edges. The FHFE
generates a suboptimal contraflow plan without iteration.
The other heuristic is based on a simulated annealing
optimization technique. Due to the searching property (that
is, global optimization) of simulated annealing, it can
generate slightly better solutions than FHFE, although the
gain from the simulated annealing method is relatively
small despite its long runtime by iterative search.

In this paper, we present capacity-aware global contra-
flow heuristics that are designed to handle multiple source
and destination nodes. We classify the contraflow problem
using Overload Degree and present two heuristics. Our
Greedy heuristic is designed to handle scenarios with a
significantly large population and network size. It also has
a flexible algorithm structure by using an evacuation route
planner as a plug-in module, thus leaving room for

improvements with faster evacuation route planners. The
other proposed heuristic is a Bottleneck Relief heuristic,
which tackles the inherent congestion problem of contra-
flow by identifying bottlenecks in the network using a
minimum cut.

Analytical and experimental evaluations are provided to
validate the usefulness of the proposed approaches. Experi-
mental results show that less than 30 percent of the total
edges for contraflow is enough to reduce evacuation time
by more than 40 percent. We also provide a comparison of
solution quality between the proposed heuristics and
integer programming (IP) (optimal contraflow network
generator).

1.3 Scope and Outline of the Paper

Our evacuation modeling is based on graph theory with
flow analysis on a macroscopic flow model. Our modeling
does not include the social behavior of the evacuees, the
operational cost/policy of contraflow, or traffic signals. Our
focus is to design scalable contraflow heuristics to address
large-scale transportation networks and accurately compare
the performance between a given network and a contraflow-
reconfigured network within our computational framework.

The rest of the paper is organized as follows: Section 2
presents the modeling and hardness of the evacuation
problem. Section 3 provides a computational framework of
the contraflow problem and presents our proposed ap-
proaches to solving the contraflow problem. In Section 4, we
describe design decisions and present their analytical
evaluations. Section 5 gives the experimental setup and
evaluation of the approaches. Finally, Section 6 summarizes
and concludes with a discussion of future work.

2 MODELING AND PROBLEM HARDNESS

2.1 Problem Formulation

Evacuation is a situation where residents in a dangerous
area are removed to safe places as quickly as possible. Many
approaches have been proposed to model the evacuation
situation using microscopic simulation [8], [3], [31], [34],
mesoscopic models [39], and macroscopic network flow
models [2], [10], [21]. Microscopic simulation models traffic
flow at a single-vehicle level. The behavior of individual
drivers is under the influence of vehicles in their proximity.
This model is usually accompanied by car-following
models. Mesoscopic simulation models traffic flow by
groups of traffic entities. Vehicles are not described
individually but in more aggregate terms using probability.
Macroscopic models describe traffic flow at a high level of
aggregation. Although researchers have debated the suit-
ability of these various approaches for describing traffic
flow, many favor macroscopic modeling due to the
increased public attention, improved techniques, and the
computational capacity this approach offers [24].

In this research, we select a macroscopic network flow
model using a mathematical graph to represent the
evacuation situation. The movement of evacuees is repre-
sented as a flow on the graph. Although a macroscopic
model loses the properties of single-vehicle traffic flow (for
example, congestion propagation), it is still a powerful tool
for evacuation planning because it effectively deals with the
road density, the weighted mean speed, and, most im-
portantly, the capacity of a given transportation network.
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Thus, macroscopic models provide evacuation planners
with the means to evaluate systemwide evacuation strate-
gies. In addition, macroscopic models are more suitable
than microscopic models for large-size networks due to
their scalability.

In macroscopic evacuation models, it is necessary to
represent the situation with a mathematical graph structure.
Let G(N, E) be a directed network, where N is the set of
nodes, and E is the set of edges. Each node has an initial
occupancy value—that is, the number of residents to
evacuate—and a node capacity. The use of node capacity
depends on the evacuation model. For example, a building
evacuation may model a room as a node. In this case, room
size is a node capacity. If a node is modeled as an
intersection in a transportation network, the node capacity
can be set to infinity. In the case of limited node capacity,
such as a small stairwell in a building evacuation or a toll
plaza in a transportation network, such a node will be a
choking junction and negatively affect the edge flow around
the node.

Each edge also has an edge capacity, a travel time, and an
initial direction. The edge capacity is defined as the number
of traveling units (for example, vehicles or pedestrians) per
given unit period. For example, a highway edge segment
may have a capacity of 1,800 vehicles per hour under a
normal operation. The evacuation situation has multiple
source nodes and destination nodes. Evacuation time is
defined as the period from the moment when the first
evacuee leaves a source node to the moment when the last
evacuee arrives at a destination node.

It is worthwhile to note that there are two different ways
of modeling edge capacity in macroscopic methodology.
The first method can be called “continuous entering.” In
this approach, it is assumed that the evacuees equivalent to
the edge capacity keep entering an edge every unit of time
as long as the edge is available. The second method can be
called “occupy and empty.” Evacuees equivalent to the
edge capacity occupy the edge for the edge travel time.
During the occupying period, the edge is not available to
other evacuees staying at a “from” node. In our evacuation
model, we choose “continuous entering” to model the edge
capacity because it is a more realistic representation of the
evacuees’ movement.

With the given network setup, we want to find a network
reconfigured by contraflow with the objective of minimiz-
ing the evacuation time. There are two constraints. First, the
capacity needs to be constant. Our problem formulation
does not incorporate the dynamic nature of network
properties (for example, bridge collapse in the middle of
an evacuation procedure). On the other hand, the travel
time of an edge can be either constant or changeable,
depending on the characteristics of the evacuation route
planner. Second, partial reversal is not allowed. This
constraint will keep the problem size at a reasonable level.
In our modeling, we follow a typical network model, which
is easily persisted in relational tables, taking future
enhancements into account [23]. The following is a formal
summary of our contraflow problem:

Given: 1. A transportation network, a directed graph
G(N, E).

2. Each node has initial occupancy and capacity.

3. Each directed edge has a capacity, a travel

time, and an initial direction.

4. Source and destination nodes.

Find: A contraflow network configuration (that is, desired

direction for each edge).

Objective: Minimize evacuation time.
Constraint: 1. Capacity is constant.

2. Partial reversal (for example, partial

number of lanes) is not allowed.

Fig. 2 illustrates a simple evacuation situation based on
the problem formulation. Nodes A and C are modeled as
source nodes, whereas node E is a destination node (for
example, evacuation shelter). Nodes B and D have no initial
occupancy and only serve as transshipment nodes. The unit
time (for example, minute) is defined according to the
model scale. The evacuation time of the original network in
Fig. 2a is 22 (details of how to measure evacuation time are
discussed in Section 4.2). Figs. 2b and 2c illustrate two
possible contraflow configurations. All the two-way edges
used in the original configuration are merged by capacity
and directed in favor of increasing the outbound evacuation
capacity. There are two candidate configurations that differ
in the direction of edges between nodes B and D. The
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Fig. 2. Graph representation of a simple evacuation situation and two following contraflow configuration candidates. (a) Graph representation of an

evacuation situation. (b) Contraflow configuration 1. (c) Contraflow configuration 2.



network in Fig. 2b reduces the evacuation time to 11 (that is,
50 percent of the original evacuation time), whereas the
network in Fig. 2c reduces evacuation time to 14
(64 percent). This example illustrates the importance of
choice among possible contraflow network configurations.
Moreover, we have to know that there are critical edges
affecting the evacuation time such as edge (B-D) in Fig. 2.

2.2 Proof of NP-Completeness

In this section, we prove the NP-completeness of the
contraflow problem. In general, the process of devising an
NP-completeness proof for a decision problem � consists of
the following four steps [17]:

1. showing that � is in NP,
2. selecting a known NP-complete problem �0,
3. constructing a transformation f from �0 to �, and
4. proving that f is a (polynomial) transformation.

To conduct our proof, we select the 3-SATISFIABILITY
(3SAT) problem as our known NP-complete problem. This
problem is considered the root of most other NP-complete
problems and is derived from the SATISFIABILITY pro-
blem whose NP-completeness was proven by Cook [17].
The 3SAT problem is specified as follows:

3SAT

INSTANCE: Collection C ¼ c1; c2; . . . ; cm of clauses on a

finite set U of variables such that jcij ¼ 3 for 1 � i � m.
QUESTION: Is there a truth assignment for U that

satisfies all the clauses in C?

The EVAC-TIME used in the following definition is a
polynomial function that can calculate the evacuation time
of a given graph. For simplicity, each edge in an undirected
graph G could be flipped in either direction.

CONTRAFLOW

INSTANCE: An undirected graph G ¼ ðV;EÞ with initial

occupancy oðvÞ 2 Zþ (where Zþ denotes the positive

integers) for some v 2 V, destination vertices for some

v 2 V, capacity cðeÞ 2 Zþ and travel time tðeÞ 2 Zþ for each

e 2 E, a directed graph G0 ¼ ðV;E0Þ, and evacuation time
bound B 2 Zþ.

QUESTION: Is there a function f : e! ½fu; vg; fv; ug� for

each e 2 E where fu; vg or fv; ug is a directed edge in E0

such that EVAC � TIMEðG0Þ � B?

Lemma 1. CONTRAFLOW is NP-complete.

Proof. It is easy to see that CONTRAFLOW 2 NP, since a
nondeterministic algorithm need only guess a new
directed graph G0 by flipping all edges randomly and
check in polynomial time that G0 has evacuation time B
or less.

We transform 3SAT to CONTRAFLOW. Let U ¼
fu1; u2; . . . ; ung and C ¼ fc1; c2; . . . ; cmg be any instance
of 3SAT. We must construct a graph G0 ¼ ðV;E0Þ and set
a positive integer B such that G0 has evacuation time B or
less if and only if C is satisfiable.

The construction consists of a source component, a
destination component, and a flipping component

between the source and destination components. The
source component consists of vertices s1; s2; . . . ; sm with
oðsÞ ¼ 1. The destination component consists of two
layers. The first layer consists of each literal and their
negated literals in U (that is, u1; u1; u2; u2; . . . ; un; un). The
second layer consists of the XOR of each pair of literals
(that is, u1 � u1; u2 � u2; . . . ; un � un). This XOR layer
serves as a destination node set in the CONTRAFLOW
problem. The two nodes in a pair (ui and ui) in the first
layer are connected to each XOR node (ui � ui) in the
second layer with edges, each of which has tðeÞ ¼ 1 and
cðeÞ ¼ 1. Finally, a flipping component consists of edges
with the following definition: For each clause cj 2 C, let
the three literals in cj be denoted by xj, yj, and zj. Then,
the edges are fsj; xjg, fsj; yjg, fsj; zjg, each of which has
tðeÞ ¼ 0 and cðeÞ ¼ 1. Fig. 3 shows an example of the
contraflow graph obtained when U ¼ fu1; u2; u3; u4g and
C ¼ ffu1; u3; u4g; fu1; u2; u4gg.

It is easy to see how the construction can be
accomplished in polynomial time. All that remains to
be shown is that C is satisfiable if and only if EVAC �
TIMEðG0Þ � B by flipping edges in G to prove that the
above construction is indeed a transformation.
! : Suppose that C is satisfiable. We define the

function f as e ¼ fu; vg if v is TRUE or e ¼ fv; ug if v is
FALSE (that is, draw an arrow head on the TRUE node
and an arrow tail on the FALSE node). We assume that B
is equal to the number of source nodes. If C is satisfiable,
at least one edge from each source node will be directed
toward the destination component. This guarantees that
one occupant in each source node can evacuate to the
destination nodes (second layer in the destination
component) with at most B evacuation time. The worst-
case evacuation time B happens when all the source
nodes are pointed to one node in the first layer of the
destination component.
 : Suppose that EVAC � TIMEðG0Þ � B by using

the same flipping function f described above. For each
occupant in each source node to evacuate to a destination
node, at least one edge from the source node should be
directed toward the first layer of the destination
component. This guarantees that C is satisfiable. tu

3 COMPUTATIONAL FRAMEWORK AND PROPOSED

APPROACHES

3.1 Computational Framework and Approach
Overview

In this section, we introduce the computational structure of
the contraflow problem using Overload Degree and present
appropriate approaches according to each workload zone.
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Fig. 3. CONTRAFLOW instance resulting from 3SAT instance in which

U ¼ fu1; u2;u3; u4g and C ¼ ffu1; u3; u4g; fu1;u2; u4gg.



As will be shown, Overload Degree is a key determinant of
the overall evacuation time and need for contraflow.

Overload degree. Due to the combinatorial nature of the
contraflow problem, acquiring the optimal solution be-
comes considerably challenging as the size of the network
increases. To address the challenges in problem size, we
need to define a parameter to classify the computational
structure of the problem. The number of traveling units and
bottleneck capacity of a given network are two critical
factors affecting the computational structure. The evacuees’
movement is analogous to the flow movement through a
bottleneck of a gourd bottle. If the amount of flow is large or
bottleneck size is small, it takes a long time to finish the
flow movement. With this analogy, we define the term
“Overload Degree” as follows:

Definition 1 (Overload Degree). Overload Degree = Number
of Traveling Units/Bottleneck Capacity Without Contraflow.

“Bottleneck Capacity Without Contraflow” refers to a
minimum cut value (or maximum flow value) of a given
network without contraflow. In the calculation of the
bottleneck capacity, node capacity is not considered. The
hardness of the contraflow problem is a function of the
Overload Degree. For a small Overload Degree, we can
consider mathematical programming, search-based ap-
proaches, or microscopic simulation to produce optimal
results. For example, suppose that there are 500 evacuees on
a network whose minimum cut is 100. The Overload Degree
is only 5. In such a case, the network has enough bottleneck
capacity to evacuate the 500 evacuees. Thus, the computa-
tional workload is relatively low. For a medium Overload
Degree, we definitely need heuristic approaches to achieve
a balance between the result quality and the reasonable
computational workload. For a large Overload Degree, we
need a more computationally efficient approach.

Fig. 4 is the same example evacuation network as in Fig. 2
but with different initial occupancy. The dotted line is a
bottleneck of this network, separating the source nodes and
the destination nodes. The value of the bottleneck capacity is
found to be 3 by adding the capacity of edge (B-E) (that is,
from B to E) and (D-E). Suppose node A has occupancy 2 and
C has 1. We do not need contraflow because the current
bottleneck capacity is enough to handle the small number of
traveling units (that is, evacuees). In this case, the Overload
Degree is 1. As the number of initial occupancy increases (for
example, > 3), the current bottleneck capacity becomes
insufficient. We start thinking of contraflow to reduce the
evacuation time. The computational workload accordingly

becomes heavy to calculate the scheduling of the large
number of traveling units. Suppose nodes A and C have
2,000 and 1,000 evacuees each. Then, the situation becomes
close to an infinite source problem as we can ignore the
transitional starting and ending periods of evacuation. As
shown in this example, Overload Degree is a critical
parameter for determining the problem size and its con-
gruent solution for a given network.

In the absence of overload (for example, Overload
Degree is less than 1), contraflow offers few or no benefits
because the original network has enough capacity for the
current evacuees to pass through. If the Overload Degree is
small (for example, a one-digit number), it is computation-
ally feasible to identify “optimal” contraflow configurations
by using optimization techniques such as mathematical
programming, search-based optimization, or microscopic
simulation. Our IP formulation belongs to the small Over-
load Degree category. Results from the IP formulation are
useful to assess the quality of solutions obtained by our
heuristics.

If the Overload Degree is medium, we have to consider
heuristics due to the heavy computational workload. At this
level of workload, it is impossible to use an iterative
learning process, which is only feasible in a small Overload
Degree. We suggest a noniterative heuristic based on a
greedy approach.

Last, if the Overload Degree is large, it is close to the case
where the network has an infinite source of evacuees. Here,
it is necessary to simplify the evacuation modeling to
address such a heavy computational workload. We have
designed a minimum cut and maximum flow [16] based
Bottleneck Relief heuristic that ignores the amount of the
population constraint.

Use of an evacuation route planner. The role of an
evacuation route planner in our framework is to calculate
the flow history and evacuation time of a given network.
The flow history of an edge is equivalent to the total
number of traveling units that pass through the edge during
an evacuation time. Our contraflow solution framework
separates the evacuation route planner from the contraflow
reconfiguration algorithm. Thus, the evacuation route
planner to be plugged in can take either a microscopic or
a macroscopic simulation approach as long as the planner
conforms to the input/output rules.

Fig. 5 shows how the evacuation route planners function
within our proposed framework. The input to the system is
an original evacuation network with predefined source/
destination nodes and edges with capacity and travel time.
There are three algorithmic components: IP, a Greedy
heuristic, and a Bottleneck Relief heuristic. For the
IP approach, the evacuation route planner is combined
with a mathematical optimizer to evaluate the networks
generated by iterative enumeration and serve as an
objective function. The Greedy heuristic uses the flow
history of the original network as input and produces a
reconfigured contraflow network. The Bottleneck Relief
heuristic uses the original network as input and directly
produces a reconfigured contraflow network.

The cost of running an evacuation route planner
increases with the size of the network. Thus, how the
evacuation route planner is used is critical in the frame-
work. The Greedy heuristic uses the evacuation route
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Fig. 4. Simple evacuation network with bottleneck capacity 3.



planner once to generate a contraflow network. The Bottle-
neck Relief heuristic does not use an evacuation route
planner. On the other hand, the IP approach uses the
evacuation route planner iteratively.

3.2 Greedy Heuristic

The basic assumption of the Greedy heuristic is that when
we run an evacuation route planner over an original
network configuration without contraflow, the edges hav-
ing more congestion history are more influential in the
decision of edge flips. Therefore, it is necessary to quantify
the congestion history on each edge with the data from the
evacuation route planner. We define the FlowHistory and
CongestionIndex of an edge e in the following way:

Definition 2 (flow history). FlowHistoryðeÞ = Total number
of traveling units going through edge e during
EvacuationTime.

Definition 3 (congestion index). CongestionIndexðeÞ ¼
FlowHistoryðeÞ=ðCapacityðeÞ �EvacuationTimeÞ.

FlowHistoryðeÞ is acquired from the result of the evacua-
tion route planner. The denominator in Definition 3 refers to
the maximally possible amount of flow of edge e during
EvacuationTime. Thus, CongestionIndexðeÞ indicates the
percentage of edge utilization during EvacuationTime. A
higher CongestionIndexðeÞ value means that the edge e has
been more congested during the evacuation process.

The third definition used in the greedy approach is the
“Degree of Contraflow.” We can define the Degree of
Contraflow in the reconfigured network as follows:

Definition 4 (Degree of Contraflow). Degree of Contra-
flow(DoC) = Number of Flipped Edges/Total Number of
Edges.

This percentage parameter indicates how many edges
are flipped among all edges in the reconfigured network.

Our Greedy heuristic has the ability to control this
parameter, which is important in the context of evacuation
because unnecessary flips lead to the waste of resources.
That is, more emergency professionals are needed as the
number of reversed road segments increases. In addition,
the unflipped edges (that is, in-bound road segments) can
be used as capacity for incoming emergency vehicles (for
example, ambulances and fire trucks).

Algorithm 1. Greedy

1: run an evacuation route planner to produce

FlowHistory and EvacuationTime on Goriginal;

2: for all edge e 2 Goriginal do

3: CongestionIndexðeÞ ¼ FlowHistoryðeÞ=ðCapacityðeÞ
� EvacuationTimeÞ;

4: end for

5: sort edges by CongestionIndexðeÞ in descending order;

6: Greconfigured ¼ Goriginal;

7: for all ði; jÞ in the first DoC% edges in the sorted edges

do

8: Greconfigured:flipðði; jÞÞ;
9: end for

10: return Greconfigured;

The Greedy algorithm shown in Algorithm 1 works in
the following way: First, we run any evacuation route
planner to generate the flow history and evacuation time of
a given original network. Second, we assign a congestion
index value to each edge. Third, the edges are sorted by
congestion index in descending order. Finally, we flip edges
in favor of a higher congestion index value among the first
DoC% of the sorted edge set. The evacuation route planner
must be run again over the reconfigured network to get the
evacuation time of the reconfigured network.

This noniterative algorithm structure may result in a
network disconnection problem because the algorithm
suggests a reversal that disconnects two subnetworks. We
can show that such a disconnection problem does not
happen. Suppose that we have two networks, G1 and G2,
and they are connected by two bidirectional edges, e1 (from
G1 to G2) and e2 (from G2 to G1). G1 has S1 (source) and D1

(destination). G2 has S2 (source). Assume to the contrary
that G2 is disconnected by reversing the edge e2. The
disconnected network means that there is at least one route
from G1 to G2 generated by the evacuation route planner.
Such a route does not exist because G2 does not have any
destination, contradicting our assumption.

Example. Fig. 6 shows a series of steps using the Greedy
algorithm to generate a contraflow network from a given
original network. We assume that the given Degree of
Contraflow is 60 percent. The network in step 1 is the
given original network. If we run an evacuation route
planner on the network, we acquire the flow history, as
well as the evacuation time. An optimal route planner
produces evacuation time 22. The network in step 2
shows the flow history value. For example, the value 17
over edge ðD-BÞ means that 17 evacuees pass through
the edge during evacuation time 22. In step 3, the
congestion index values are generated from the informa-
tion of step 2 using the formulation in the congestion
index definition. The congestion index values are sorted
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in descending order, and the first 60 percent of them
(underlined edges) are greedily selected, as shown in
Table 1. Each selected edge is compared with its opposite
edge, and the opposite edge is flipped if the selected
edge wins. The final reconfigured network is shown in
step 4, after the flipping process is finished.

The flow on edge ðB-AÞ or ðD-CÞ can be generated in
step 2 because some amount of flow oscillates between the
two nodes. This may not happen in an actual evacuation
scenario but may happen in a flowgraph. The oscillation
does not affect the final evacuation time. The final decision
between nodes B and D is edge ðD-BÞ because the direction
from D to B shows more congestion, as seen in step 3 in
Fig. 6.

3.3 Bottleneck Relief Heuristic for a Large Overload
Degree

The Bottleneck Relief approach starts from the well-known
theorem by Ford and Fulkerson [16], which states that “The
value of the max-flow in a capacitated network is equal to
the value of the min-cut.” In the context of transportation
networks, the min-cut is a bottleneck or choke capacity. The
idea behind this approach is to identify the bottleneck and
increase its capacity by contraflow.

Algorithm 2. BottleneckRelief

1: while maxflownew > maxflowold do

2: find mincut of G;

3: flip edges across mincut toward destination;

4: maxflowold ¼ maxflownew;

5: maxflownew ¼ maxflowðGÞ;
6: end while

7: return G;

If the given graph G has multiple sources and multiple

destinations, we have to place a supersource connecting to

the sources with infinite capacity and a superdestination

connecting to the destination with infinite capacity before

the algorithm BottleneckRelief is applied. The algorithm

BottleneckRelief, shown in Algorithm 2, finds a min-cut of

the given graph and flips edges across the min-cut. Then,

the location of the min-cut will change. The algorithm keeps

finding the min-cut until the maximum flow does not

improve. This algorithm is suitable for a network having a

large Overload Degree because the maximum flow is based

on the infinite flow from sources to sinks. Evacuation

scenarios over heavily crowded areas and reversible high-

way systems for specified periods of time are examples to

which we can apply this algorithm. Suppose that the

original network has p number of occupancy, n vertices,

and m edges. A proposed randomized algorithm [26] finds

a minimum cut with high probability in Oðm log3 nÞ. In the

worst case, our Bottleneck Relief heuristic runs m times,

which leads to Oðm2 log3 nÞ runtime. The network discon-

nection problem does not happen by the Bottleneck Relief

heuristic. The proof is the same as for the Greedy heuristic.

Example. Fig. 7 illustrates the application of the Bottleneck

Relief heuristic to our simple graph. Nodes A and C are

still source nodes, whereas node E is a destination node.

The source nodes are connected from a supersource as

shown in step 1. The min-cut (or max-flow) in the

original graph is represented as a dotted line in step 1

and has value 3. In step 2, we flip edges across the first

min-cut in favor of increasing capacity to the destination.

Then, the previous min-cut is no longer a min-cut due to

its increased capacity by contraflow. A second min-cut is

also shown as a dotted line in step 2. We continue these

steps until the max-flow does not increase. Step 4 shows

the final network reconfiguration.
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TABLE 1
Sorted Congestion Indexes from Step 3 in Fig. 6

Fig. 7. Example of the Bottleneck Relief heuristic.



3.4 Integer Programming Formulation

The IP approach produces an optimal contraflow plan that
can minimize the evacuation time. The IP approach is useful
in comparing the solution quality between the proposed
heuristics and optimal plan. Due to limited space, we
introduce only the most important formulations used in the
IP experiment.

Table 2 shows selected formulations of the IP approach.
Equation (1) in Table 2 defines the objective function such
that

PT
t¼1 Ft is the total amount of time to finish the

evacuation, assuming that T is large enough. If T is set to
less than the minimum value, then the formulation becomes
infeasible. Equation (2) describes the flow conservation
constraints, meaning that inflow equals outflow. Equa-
tion (3) is a contraflow constraint, and it restricts the
selection of contraflow as follows: When there is only one
edge between two nodes, we have only two options: normal
flow or contraflow. When there are two edges between two
nodes, we have three options: two normal flows or one
contraflow. We do not consider the case of reversing the
two edges at the same time. Equation (4) is used to ensure
the proper allowed amount of flow on each edge based on
the value of the edge capacity.

4 DESIGN DECISIONS AND THEIR ANALYTICAL

EVALUATIONS

4.1 Overload Degree and Result Quality

In this section, we explain the relationship between the
Overload Degree and the result quality of the proposed
approaches. We can classify the quality of results into two
levels: optimal and heuristic. An optimal result means that
the evacuation time is minimal. Optimal results are
obtained from a huge number of combinatorial network
candidates. The heavy computational load from combina-
torial optimization limits the IP approach to cases of small
Overload Degree, as shown in Fig. 8.

The prohibitive computational workload of achieving
optimal results led us to explore effective heuristics. We
designed the Greedy heuristic to meet the needs in
medium-overload scenarios. As detailed in Section 5, the

result quality of the Greedy heuristic compares reasonably
well with the optimal result. The Bottleneck Relief heuristic
is tailored to address cases of large Overload Degree.

4.2 Choice of Route Planner

In the contraflow computational framework, an evacuation
route planner plays an important role in both estimating the
evacuation time of a given network and providing the
information of the total number of traveling units passing
through each edge in the network. The estimated evacua-
tion time is used to measure the quality of the network
reconfigured by contraflow.

When we select an evacuation route planner, there is a
trade-off between the result quality and runtime. An
optimal evacuation route planner can generate an optimal
evacuation time by performing the following three steps:
creating a time-expanded network, applying a minimum-
cost flow algorithm, and extracting an evacuation time. The
existing minimum-cost flow solvers (for example, NETFLO
[27], RELAX [6], RNET [20], and Cost Scaling (CS) [18]) are
all optimal evacuation route planners. The major drawbacks
of optimal evacuation route planners are their poor
scalability and the requirement of prior knowledge of the
upper bound of the evacuation time. These linear methods
have an exponential runtime proportional to a given
network size.

A heuristic evacuation route planner, by contrast, avoids
these issues, often producing a close-to-optimal evacuation
time with good scalability. The CCRP [30] algorithm is the
only heuristic evacuation route planner available in this
domain. The algorithm divides evacuees from each source
into multiple groups and assigns a route and time schedule
to each group based on its destination arrival time. In terms
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of traffic assignment, CCRP is neither system optimal nor
user equilibrium. However, CCRP does use a close approx-
imation of a system-optimal approach. The heuristic gives
priority to the route with the earliest destination arrival time.
Even though CCRP does not produce optimal solutions in all
evacuation scenarios, experiment results show that most
solutions are less than 10 percent longer than the optimal
evacuation time. In addition, the planner does not require
the preprocessing of a given network or the upper bound of
the evacuation time.

The following sections present an analytical evaluation
of evacuation route planners. We use the following
notations to describe the original network: p number of
traveling units, n vertices, and m edges.

4.2.1 Optimal Route Planner, RELAX [6]

RELAX is a software code to solve the classic minimum cost
flow problem with integer data. It is based on the relaxation
method, which is designed to solve simultaneous equations
by guessing a solution and reducing the errors that result by
successive approximations until the errors are less than
some specified amount. Bertsekas, who created the mini-
mum flow solver RELAX, noted that there is no known
polynomial complexity bound for the relaxation method [5].
Thus, we have to depend on experimental evaluation to
measure the performance of the RELAX evacuation route
planner in combination with the Greedy heuristic.

4.2.2 Optimal Route Planner, Cost Scaling [18]

The CS minimum cost flow algorithm combines the ideas
of cost scaling, the push-relabel maximum flow method,
and the relaxation method. Goldberg incorporated several
heuristics (for example, price update, price refinement, arc
fixing, and push look-ahead) to improve the practical
performance of the CS algorithm. However, we will use
the asymptotic worst-case time bound Oðn2m logðnCÞÞ in
our analysis, which is not affected by the heuristics (C:
biggest cost).

As described previously, an optimal evacuation route
planner runs three steps to generate an evacuation plan.
First, it generates a time-expanded graph from a given
network. Second, a minimum cost flow method is applied
on the time-expanded graph. Third, the postprocessing of
the flow history result retrieves the evacuation time. The
second step is dominant in terms of runtime. GT is the
time-expanded graph built from the original network
with upper bound T . The upper bound number of nodes
in GT is N ¼ nðT þ 1Þ, and the upper bound number of
edges is M ¼ ðnþmÞT þm� �ði;jÞ2m�ij, where �ij de-
notes travel time of edge ði; jÞ [21]. If we assume, as is
generally true, that the transportation network is sparse,
with an average degree of vertices 3, we can assume that
m ¼ 3n. We can also assume that the maximum evacua-
tion time T is proportional to the occupancy value p.
Then, N is proportional to np, and M is also proportional
to np without loss of generality. The time bound of CS is
OðN2M logðNCÞÞ in GT . If we combine our assumptions
with the upper bound, we can acquire the following
runtime: OðN2M logðNCÞÞ ¼ Oðn3p3 logðnpCÞÞ. That is, the
combination of the Greedy heuristic with CS runs
superlinearly proportional to the number of nodes and
traveling units.

4.2.3 Heuristic Route Planner, CCRP

The algebraic cost model of CCRP is presented in [30]. The
CCRP evacuation route planner uses an iterative approach.
At each iteration, the route for one group of people is
chosen, and the capacities along the route are reserved. The
total number of iterations is equivalent to the number of
groups generated. The computation of routes for each
group is performed by running the generalized Dijkstra’s
shortest path search. The implementation following double
bucket data structures leads to an algebraic cost model of
Oðpðmþ 2CnÞÞ, where C is the maximum edge weight. That
is, the combination of the Greedy heuristic with CCRP runs
linearly proportional to the number of nodes and evacuees.

Lemma 1. The Greedy heuristic with a heuristic evacuation route
planner is faster than the Greedy heuristic with an optimal
route evacuation planner.

Proof. In the Greedy algorithm, step 1 runs the evacuation
route planner one time and is dominant in terms of
runtime. Thus, a direct comparison between the optimal
and heuristic evacuation route planner runtimes can
prove the lemma. The optimal evacuation route planner
(CS) runs in Oðn3p3 logðnpCÞÞ and the heuristic evacua-
tion route planner (CCRP) runs in Oðpðmþ 2CnÞÞ. By
comparing the two runtimes, we can conclude that the
Greedy algorithm with a heuristic evacuation route
planner is faster than that with an optimal evacuation
route planner when the n3p2logðnpCÞ

mþ2Cn > 1 relation holds,
which is always true in transportation networks. tu

Lemma 2. The Bottleneck Relief heuristic is faster than the
Greedy one with CCRP if p > 9nlog3n

ð3þ2CÞn .

Proof. The Bottleneck Relief heuristic runs in Oðm2log3nÞ.
The runtime of CCRP is Oðpðmþ 2CnÞÞ. By compar-

ing the two runtimes with the assumption of a sparse

transportation network ðm ¼ 3nÞ, we can conclude

that the Bottleneck Relief heuristic is faster than the

Greedy one with CCRP if p > 9nlog3n
ð3þ2CÞn . We can verify

the formula using the metropolitan scenario used in

our experiments with a two-mile radius zone, which

has 269,635 ðpÞ occupancy, 562 ðnÞ nodes, and

1,443 ðmÞ edges. This data set fits the sparse network

assumption ðm ¼ 3nÞ. If the parameter values are

plugged in, we can observe that the formula satisfies

the following: ðp ¼ 269; 635Þ > ð 9nlog3n
ð3þ2CÞn ¼ 21; 038Þ. tu

5 EXPERIMENTAL EVALUATION

5.1 Experiment Setup

We implemented and evaluated the algorithms using real-
world data sets. The language used was C++, and the
experiments were performed on a dual-CPU Pentium III
650-MHz workstation with 2 Gbytes of memory running
Linux.

5.1.1 System Design

We implemented the IP formulation on CPLEX, a mathe-
matical programming optimizer. CPLEX is a well-known
commercial optimization tool to solve IP. The Greedy
heuristic uses an evacuation route planner as a plug-in
external module. The two communicate via text files to
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exchange evacuation time and flow history information.

This implementation framework gives a flexible structure to

accommodate new evacuation route planners or future

enhancements of existing planners. Evaluating the reconfi-

gured contraflow network is optional and therefore not

included in measuring the performance of the approaches.

In the case of the Bottleneck Relief heuristic, the original

network is directly used as an input because the heuristic

requires only the capacity information of a given network.

5.1.2 Data Set Description

We prepared two data sets. The first is a virtual scenario of

a nuclear power plant failure in Monticello, Minnesota.

There are 12 cities directly affected by the failure within

10 miles of the facility and one destination shelter. This

scenario is a special type of evacuation having a single

destination because all evacuees should have a radioactive

clearance check at the designated facility. The demographic

data is based on Census 2000 population data. The total

number of evacuees is about 42,000. If the given situation is

represented as a graph, it contains 47 nodes with 148 edges.

The graph structure is based on large edge granularity with

an interstate highway (I-94) and major arterial roads. Thus,

the size of the network is relatively small. The interstate

highway has a larger capacity than other edges. The

evacuation time with the original network configuration is

272 minutes (4 hours and 32 minutes). We created this

small-size case file (in terms of number of nodes) to

compare the quality of our heuristics with the optimal

network configuration from IP.
The second data set was prepared with our evacuation

scenario generation software. The software has the cap-

ability of specifying the size of the evacuation zone,

adjusting the amount of population, changing the mode of

evacuation between driving and walking, and globally

adjusting the capacity of edges. With these functionalities,

we were able to generate scenarios with various sizes

around the Minneapolis-Saint Paul, Minnesota, metropoli-

tan area.
The data used in the software is given as follows:

. Map data. This consists of TP+ (planning purpose)
and Minnesota Department of Transportation base-
map data (detailed geometry representation). The
TP+ contains road type, road capacity, travel time,
number of lanes, etc. It also contains virtual nodes as
population centroids for each traffic analysis zone.

. Population data. This consists of Census 2000 data
(nighttime estimation) and employment data (day-
time estimation) but not including travelers (for
example, shoppers).

We selected three different locations, as mandated by the

Department of Homeland Security, with three different

network sizes (that is, half-, one-, and two-mile radii). For

security reasons, the specific names of the locations have

been removed in this paper. The primary purpose of the

second data set is to compare the results from heuristic

approaches and to test the scalability due to the relatively

larger network size compared to the first data set.

5.2 Overload Degree and Result Quality

As explained previously, the Overload Degree is an
important parameter in classifying the computational
structure of the contraflow problem and the proposed
heuristics according to the degree of computational work-
load. In this section, we examine the relationship between
the Overload Degree and other factors such as the
evacuation time and runtime of our heuristics using the
Monticello data set. Fig. 9a shows the effects of the
Overload Degree on evacuation time. We performed this
test by changing the number of traveling units over source
nodes. We can observe that the evacuation time is linearly
proportional to the Overload Degree for all methods. Most
heuristics showed a reduction of evacuation time by about
30 percent regardless of the Overload Degree. The Greedy
heuristic with an optimal evacuation route planner (RE-
LAX) always showed minimum evacuation time. The
combination of the Greedy heuristic with a heuristic
evacuation route planner (CCRP) placed in the middle.
The Bottleneck Relief heuristic also showed comparable
result quality with the Greedy heuristic.

Fig. 9b shows the relationship between the Overload
Degree and runtime. The Greedy heuristic with RELAX
(optimal evacuation route planner) has a steeply, perhaps
superlinearly, increasing runtime. Greedy with CS (optimal
evacuation route planner) showed a remarkably faster
runtime than Greedy with RELAX as the Overload Degree
increases. However, Greedy with CCRP (heuristic evacua-
tion route planner) was the fastest (almost-zero runtime,
along with the Bottleneck Relief heuristic in Fig. 9b) among
the combinations of Greedy heuristics with various evacua-
tion route planners. These results indicate that the selection
of evacuation route planner is a critical design decision for
scalability. The Bottleneck Relief heuristic had a constant
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runtime because it did not involve occupancy data (that is,
the number of evacuees) as part of the input.

Fig. 10a shows the quality of Greedy heuristics by
comparing the results from IP. First, Greedy heuristics,
regardless of evacuation route planner, showed about a
40 percent reduction of evacuation time. Greedy with an
optimal evacuation route planner (RELAX or CS) resulted
in only a slightly better evacuation time than that with the
heuristic evacuation route planner (CCRP). Second, we
observe that a gap (14 minutes) exists between Greedy
heuristics and optimal results. Fig. 10b shows a runtime
comparison. IP resulted in a much higher runtime (205 sec-
onds) because the IP formulation took 130,109 iterations to
produce an optimal contraflow network, whereas the
Greedy heuristics took only one iteration.

5.3 Choice of Route Planner and Scalability

Fig. 11 shows the convergence pattern with regard to the
Degree of Contraflow using RELAX and CCRP. Although
Greedy with RELAX always produced better results than
that with CCRP, CCRP provided a similar result quality as
RELAX, showing only a 4-minute gap in evacuation time
(RELAX: 170 minutes, CCRP: 174 minutes). Both planners
also showed similar convergence patterns with regard to
the Degree of Contraflow. In the Monticello case, less than
10 percent of the total edges contribute to the constantly
reduced evacuation time.

We also performed experiments on metropolitan scenar-
ios to examine the convergence patterns of the Degree of
Contraflow. Most evacuation times converged within
30 percent Degree of Contraflow. This means that the
limited resources required to implement contraflow, such
as barricade trucks and police cars, can be effectively
dispatched to the appropriate locations based on the Degree
of Contraflow parameter. The maximum gap in evacuation
time observed between RELAX and CCRP was 32 minutes,

and the minimum gap was 0 minutes. On the average, the
metropolitan data sets showed a 45 percent reduction in
evacuation time by contraflow from the original to the
reconfigured network.

Fig. 12 shows the scalability of the Greedy heuristic with
different evacuation route planners using metropolitan
scenarios. The evacuation route planner RELAX showed a
steep runtime increase. The evacuation route planner CS
showed better scalability even though it produces the same
result quality as RELAX. As shown in the graph, CCRP
provided the best performance scalability with regard to the
network size. Nowadays, evacuation at the metropolitan
scale is often the issue of interest. In such cases, CCRP will
play an important role in scaling our approaches to tackling
huge networks.

5.4 Monticello Scenario Results and Implications
for Planning

In this section, we describe two findings from the
Monticello scenario that have especially important implica-
tions for evacuation route planning. The first finding is the
efficiency of the computerized evacuation route planning.
Fig. 13 compares a handcrafted plan with routes suggested
by transportation analysts of the Department of Transporta-
tion and a plan generated by the heuristic CCRP evacuation
route planner and the Greedy heuristic. The handcrafted
version (Fig. 13a) results in an evacuation time without
contraflow that is twice as long (554 minutes) as that
generated by CCRP (276 minutes) (Fig. 13b). The main
reason for the reduction in evacuation time achieved by the
route planner is its ability to correctly select the direction of
edges, as well as its extensive use of various routes around
the destination.

A second finding is the efficiency of the computerized
contraflow reconfiguration. On the network shown in
Fig. 13c, we observe that 10 percent of the edges are chosen
for contraflow by the Greedy heuristic. The resulting
reconfigured network can further reduce the evacuation
time to 180 minutes, which is 32 percent of the time
required by the original handcrafted version. The 10 percent
Degree of Contraflow is meaningful in that we can apply
limited resources to the most congested road segment for
contraflow and reserve the remaining capacity for incoming
emergency traffic. In the context of transportation planning,
most edges selected for contraflow in our experiments
correspond to major highways with large capacity and local
arterial roads around the destination. This selection scheme
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will help planners to identify and refine more efficient

routes for contraflow.

6 CONCLUSION AND FUTURE WORK

Current evacuation procedures depend heavily on the use

of surface traffic through the limited capacity of road

networks. From this perspective, contraflow must be seen

as one of the key elements in any evacuation planned on the

existing transportation infrastructure. Taking into account

the nature of transportation networks, we modeled and

analyzed evacuation situations using graph theory. In our

model, one or more source nodes can be added, whereas

existing algorithms only cover situations with a single

source due to conflicts of optimal paths from different

source nodes. The multiple-source and multiple-destination

contraflow problem belongs to a category of NP-complete

problems. Our main contribution lies in the fact that we

address such a challenging contraflow problem with

computational structure analysis and provide scalable

heuristics with high-quality solutions. We also presented

analytical and experimental evaluations. The following

summarizes the two contraflow heuristics we developed:

. Greedy heuristic. This guarantees a promising
solution quality in spite of its fast runtime. The
evacuation planning software needs to be interactive
due to various combinations of input parameters
and evolving data sets. Thus, runtime is a critical
factor when we implement a computerized contra-
flow planner. Our well-designed approach, based on
a Greedy implementation that is tailored to contra-
flow problems, has some advantages over general
iterative methods. With our Greedy heuristic, the
number of contraflowed edges is adjustable. The
scalability is superior to that of mathematical
programming or simulation-based approaches.

. Bottleneck Relief heuristic. This is suitable for a
contraflow situation with large numbers of evacuees.
Although we were able to observe comparable result
quality with the Greedy approach, the runtime of the
Bottleneck Relief heuristic is fastest regardless of the
number of traveling units.
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Even though a contraflow operation on urban arterial
roadways and long sections of interstate freeways for
evacuations is accompanied by complicated issues of safety,
accessibility, and cost, our proposed algorithms for simpli-
fied situations should be considerably helpful to planners
designing contraflow plans because the objective of our
research is to minimize the evacuation time, which is an
essential part of planning.

Future work. More in-depth research is required for
contraflow algorithms. Other possible methods should be
examined such as the possibility of flipping a path instead
of an edge. In addition, we need to explore the application
of queuing theory [1], [4], [9] and search techniques in the
artificial intelligence field [19], [33], [35] to the contraflow
problem. We will use an evacuation route planner based on
microscopic simulation to see how detailed congestion
phenomena affect the choice of edges to be reversed.
Inbound traffic demand should be considered. Network
capacity should be preempted for emergency vehicles,
traffic officers, or firefighters. Partial lane reversal and time-
dependent capacity-varying edges need to be incorporated
in the modeling. The quantitative values of the Overload
Degree—for example, the practical range of medium Over-
load Degree—need to be established and refined. We will
develop a more realistic congestion index formula using the
fundamental diagram between flow, density, and speed
frequently used in the traffic operations area. Finally, the
time-dependent nature of traffic flow can be addressed in
the evacuation route planner.
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