Evacuation Route Planning

\& Spatio-Temporal Networks

Shashi Shekhar

McKnight Distinguished University Professor
Department of Computer Sc, \& Eng., University of Minnesota www.cs.umn.edu/~shekhar, shekhar@umn.edu

Acknowledgements

- Sponsors
- NSF, AHPCRC, Army Research Lab.
- CTS, MnDOT
- Key Individuals
- Univ. of Minnesota -
- MnDOT -
- URS -

Sangho Kim, Qingsong Lu, and Betsy George Sonia Pitt, Robert Vasek, Cathy Clark, Mike Sobolesky, Eil Kwon
Daryl Taavola, Tait Swanson, Erik Seiberlich

- Participating Organizations
- DPS, MEMA, Mpls./St. Paul Emergency Mgmt.
- Dept. of Public Safety, DOE, DOH, DO Human Services
- Coast Guard, FHWA, TSA, Mn National Guard, UMN
- 9 Counties, 4 Cities, Metropolitan Council, Metro Transit
- 3 Fire Depts., 7 Law Enforcements

Spatial / Spatio-temporal Data Mining: Example Projects

Spatial Databases: Representative Projects

Outline

- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation
. Conclusion and Future works

Transportation Motivation

TRANSPORTAION RESEARCH BOARD CF THE NATONU ACACEMES		
10-2	Gritica	

- CONGESTION: increasingly congested facilities across all modes;
- ENERGY, ENVIRONMENT, AND CLIMATE CHANGE: extraordinary challenges;
- INFRASTRUCTURE: enormous, aging capital stock to maintain;
- FINANCE: inadequate revenues;
- EQUITY: burdens on the disadvantaged;
- EMERGENCY PREPAREDNESS, RESPONSE, AND MITI-

GATION: vulnerabilitv to natural disasters and terrorist

The slow and ineffective evacuations from Hurricanes Katrina and Rita in 2005 pointed to the importance of having plans that can be executed and ions mismatched to of ensuring that intergovernmental collaborations are effective. In addition, the evacuations highlighted

AL: inadequate the need to plan and provide for transportation facilities that are adequate for response to, and recovery from, terrorist attacks and natural disasters.

Large Scale Evacuation due Natural Events

Hurricane: Andrews, Rita

- Traffic congestions on all highways -E.g. 100-mile congestion (TX)
- Great confusions and chaos
"We packed up Morgan City residents to evacuate in the a.m. on the day that Andrew hit coastal Louisiana, but in early afternoon the majority came back home. The traffic was so bad that they couldn't get through Lafayette." Mayor Tim Mott, Morgan City, Louisiana (http://i49south.com/hurricane.htm)

Florida, Lousiana (Andrew, 1992)

(National Weather Services)

(www.washingtonpost.com)

Houston
(Rita, 2005)

(National Weather Services)

I-45 out of Houston (FEMA.gov)

Homeland Defense \& Evacuation Scenarios

- Preparation of response to an attack
- Plan evacuation routes and schedules
- Help public officials to make important decisions
- Guide affected population to safety
- Reverse Evacuation: Mass vaccinations ?

PLANNING SCENARIOS

Executive Summaries
Created for Use in National, Federal, State, and Local Homeland Security Preparedness Activities

The Homeland Security Council
David Howe, Senior Director for Response and Planning

Preparedness for Industrial Accidents, e.g. Nuclear Power Plants

Outline

- Motivation
- Problem Statement
- Input, Output
- Objectives
- Illustration
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation
- Conclusion and Future works

Problem Statement

Given

- A transportation network, a directed graph $G=(N, E)$ with
- Capacity constraint for each edge and node
- Travel time for each edge
- Number of evacuees and their initial locations
- Evacuation destinations

Output

- Evacuation plan consisting of a set of origin-destination routes
- and a scheduling of evacuees on each route.

Objective

- Minimize evacuation egress time
- time from start of evacuation to last evacuee reaching a destination

Constraints

- Route scheduling should observe capacity constraints of network
- Reasonable computation time despite limited computer memory
- Capacity constraints and travel times are non-negative integers
- Evacuees start from and end up at nodes

A Note on Objective Functions

- Why minimize evacuation time?
- Reduce exposure to evacuees
- Since harm due to many hazards increase with exposure time!
- Why minimize computation time ?
- During Evacuation
- Unanticipated events
- Bridge Failure due to Katrina, 100-mile traffic jams due to Rita
- Plan new evacuation routes to respond to events
- Contra-flow based plan for Rita
- During Planning
- Explore a large number of scenarios Based on
- Transportation Modes
- Event location and time

Plans are nothing; planning is everything.-- Dwight D. Eisenhower

Example 1 Input: Nuclear Power Plant

Emergency Planning Zone (EPZ) is a 10 -mile radius around the plant divided into sub areas.

Monticello EPZ

Subarea Population

2	4,675
5 N	3,994
5 E	9,645
5 S	6,749
5 W	2,236
10 N	391
10E	1,785
10SE	1,390
10S	4,616
10SW	3,408
10W	2,354
10NW	707
Total	$\mathbf{4 1 , 9 5 0}$

Estimate EPZ evacuation time: Summer/Winter (good weather): 3 hours, 30 minutes Winter (adverse weather): 5 hours, 40 minutes

Data source: Minnesota DPS \& DHS
Web site: http://www.dps.state.mn.us http://www.dhs.state.mn.us

Ex. 1 Output: Evacuation Routes (Handcrafted)

Example 2: A Building floor plan

Two-story building:

- Two staircases
- Two exits on first floor

(Building floor map from EVACNET User Manual)

Example 2: Node and Edge Definition

Nodes:
Each room, hallway, staircase, etc.

Edges:

Each available link between two nodes.

Example 2: Initial State

- Each node has:

Maximum node capacity (max. number of people the node can hold)
Initial node occupancy (number of people at the node)

- Each edge has:

Maximum edge capacity (max. number of people can travel through this edge simultaneously)

Edge Travel time

(how long it takes to travel through this edge)

Second Floor

Example 2 Input: Evacuation Network with Evacuees

Edge
(Max Capacity, Travel time)

Destination node

```
Node ID
```


Example Output : Evacuation Plan \& Schedule

Example Evacuation Plan:

Group of Evacuee				
ID	Source	No. of Evacuees	Route with Schedule	Dest. Time
A	N8	6	N8(T0)-N10(T3)-N13	4
B	N8	6	N8(T1)-N10(T4)-N13	5
C	N8	3	N8(T0)-N11(T3)-N14	5
D	N1	3	N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13	14
E	N1	3	N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13	15
F	N1	1	N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14	15
G	N2	2	N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14	15
H	N2	3	N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13	16
I	N1	3	N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14	16

Group of Evacuee				
ID	Source	No. of Evacuees	Route with Schedule	Dest. Time
A	N8	6	N8(T0)-N10(T3)-N13	4
B	N8	6	N8(T1)-N10(T4)-N13	5
C	N8	3	N8(T0)-N11(T3)-N14	5
D	N1	3	N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13	14
E	N1	3	N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13	15
F	N1	1	N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14	15
G	N2	2	N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14	15
H	N2	3	N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13	16
I	N1	3	N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14	16

Outline

- Motivation
- Problem Statement

■ Why is the problem hard?

- Related Work
- Proposed Approach
- Evaluation
- Conclusion and Future works

Why is this problem hard?

- Data Availability
- Estimating evacuee population, available transport capacity
- Pedestrian data: walkway maps, link capacities based on width
- Traffic Eng.
- Link capacity depends on traffic density
- Modeling traffic control signals, ramp meters, contra-flow, ...
- Evacuee Behavior
- Unit of evacuation: Individual or Household
- Heterogeneity: by physical ability, age, vehicle ownership, language, ...
- Policy Decisions
- How to gain public's trust in plans? Will they comply?
- When to evacuate? Which routes? Modes? Shelters? Phased evacuation?
- Common good with awareness of winners and losers due to a decision
- Science
- How does one evaluate an evacuation planning system ?

Why is this problem hard computationally?

Intuition:

- Spread people over space and time
- Multiple paths + pipelining over those
A. Flow Networks

OR = Population / (Bottleneck Capacity of Transport Network)
If ($O R<=1$)
\{ shortest path algorithms, e.g. A* \}
Else if (OR \rightarrow infinity)
\{ Min-cut max-flow problem \}
Else \{ Computationally hard problem ! \}
B. Spatio-temporal Networks

- Violate stationary assumption
- behind shortest path algorithms, e.g. A*, Dijktra's
- Optimal sub-structure and dynamic programming

Outline

- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Operations Research Ideas
- Time Expanded Graphs
- Linear Programming
- Limitations
- Proposed Approach
- Evaluation
- Conclusion and Future works

Summary of Related Works \& Limitations

A. Capacity-ignorant Approach

- Simple shortest path computation, e.g. A*, Dijktra's, etc.
- e.g. EXIT89 (National Fire Protection Association)

Limitation: Poor solution quality as evacuee population grows
B. Operations Research: Time-Expanded Graph + Linear Programming

- Optimal solution, e.g. EVACNET (U. FL), Hoppe and Tardos (Cornell U).

Limitation: - High computational complexity => Does not scale to large problems

- Users need to guess an upper bound on evacuation time Inaccurate guess => either no solution or increased computation cost!

Number of Nodes	50	500	5,000	50,000
EVACNET Running Time	0.1 min	2.5 min	108 min	>5 days

C. Transportation Science: Dynamic Traffic Assignment

- Game Theory: Wardrop Equilibrium, e.g. DYNASMART (FHWA), DYNAMIT(MIT)

Limitation: Extremely high compute time

- Is Evacuation an equilibrium phenomena?

Time Expanded Graph

Step 1:

Convert evacuation network \boldsymbol{G} into time-expanded network $\boldsymbol{G}_{\boldsymbol{T}}$ with user provided time upper bound \mathbf{T}.

G : evacuation network
with n nodes ($n=4$)
(Source : H. Hamacher and S. Tjandra, "Mathematical Modeling of Evacuation Problems: A State of the Art". Pedestrian and Evacuation Dynamics, pp. 227-266, 2002.)

Linear Programming (2/3)

Step 2: Treat time-expanded network $\boldsymbol{G}_{\boldsymbol{T}}$ as a flow network and define the evacuation problem as a minimum cost flow problem on $\boldsymbol{G}_{\boldsymbol{T}}$:

$$
\begin{aligned}
& \min \quad \sum_{t=0}^{T} \sum_{i \in D} t x_{i d}(t) \quad \text { (minimize total evacuation time of all evacuees) } \\
& x_{s i}(0)=q_{i}, \forall i \in S, \\
& \sum_{t=0}^{T} \sum_{i \in D} x_{i d}(t)=\sum_{j \in S} q_{j}, \\
& \text { (initial occupancy at source nodes at time } \mathbf{0} \text {) } \\
& \text { (all evacuees reach destination nodes by time } \mathbf{T} \text {) } \\
& y_{i}(t+1)-y_{i}(t)=\sum_{k \in \operatorname{pred}(i)} x_{k i}\left(t-\lambda_{k i}\right)-\sum_{j \in \operatorname{succ}(i)} x_{i j}(t) \text {, } \\
& t=0, \ldots, T ; \forall i \in N \\
& y_{i}(0)=0, \forall i \in N \text {, } \\
& y_{i}(t)=0, \forall i \in D ; t=0, \ldots, T \\
& 0 \leq y_{i}(t) \leq a_{i}, t=1, \ldots, T ; i \in N-D \\
& 0 \leq x_{i j}(t) \leq b_{i j}, t=0, \ldots, T-\lambda_{i j} ; \forall(i j) \in A \\
& N \text { : set of nodes, } \\
& \boldsymbol{S} \text { : set of sources; } \boldsymbol{D} \text { : set of destinations, } \\
& \boldsymbol{q}_{\boldsymbol{i}} \text { : initial \# of evacuees at source node } \boldsymbol{i}, \\
& x_{i j}(t) \text { : flow from node } i \text { to } j \text { at time } t, \\
& \boldsymbol{y}_{i}(\boldsymbol{t}) \text { : \# of evacuees stay at node } \boldsymbol{i} \text { at time } \boldsymbol{t} \text {, } \\
& \boldsymbol{a}_{\boldsymbol{i}} \text { : max. capacity of node } \boldsymbol{i} \text {, } \\
& \boldsymbol{b}_{i j} \text { : max. capacity of arc from node } \boldsymbol{i} \text { to } \boldsymbol{j} .
\end{aligned}
$$

Step 3: Solve above problem using minimum cost flow solvers.
e.g. NETFLO [Kennington and Helgason,1980], RELAX-IV [Bertsekas and Tseng, 1994].

Outline

- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Time aggregated Graph
- Capacity Constraint Route Planner
- Dealing with non-stationary ST Networks
- Evaluation
- Conclusion and Future works

Representation Challenge: Time-varying Networks

Static	Time-Variant
Which is the shortest travel time path from downtown Minneapolis to airport?	Which is the shortest travel time path from downtown Minneapolis to airport at different times of a work day?
What is the capacity of Twin- Cities freeway network to evacuate downtown Minneapolis ?	What is the capacity of Twin- Cities freeway network to evacuate downtown Minneapolis at different times in a work day?

"U.P.S. Embraces High-Tech Delivery Methods - (by Claudia Deutsch) The research at U.P.S. is paying off. Last year, it cut 28 million miles from truck routes - saving roughly three million gallons of fuel - in good part by mapping routes that minimize left turns"

Representations of (Spatio-)temporal Networks

(1) Snapshot Model [Guting 04]

Node: ®.) Edge: Travel time

Q? Starting at N1 at $\mathrm{t}=1$, what time do we reach N 5 assuming no wait. (Lagrangian semantics)
(2) Time Expanded Graph (TEG) [Ford 65$]$

\longrightarrow Holdover Edge
Transfer Edges
(3) Time Aggregated Graph (TAG) [Or Approach]
\square Attributes aggregated over edges and nodes.

Edge $\xrightarrow{\left[m_{1}, \ldots \ldots, m_{T}\right]} \quad m_{i}$ - travel time at $t=\mathrm{i}$

TAG vs. TEG: Theoretical Storage Cost Comparison

- Intuitively storage_cost(TAG) < storage_cost (TEG),
(a) TAG does not replicate nodes and edges
(b) TAG can use time-series compression when any property is invariant for some time-intervals
- Formally, if $\mathrm{k}<(\mathrm{n}+\mathrm{m}+\mathrm{p})$ and $\mathrm{T} \gg 1$.
- Storage cost $(T E G)=O(n T+m T)+O(p T)$
- Storage cost (TAG) $=\mathrm{O}(\mathrm{n}+\mathrm{m})+\mathrm{O}(\mathrm{kT})$
- Where $\mathrm{n}=$ number of nodes
- m = number of edges
- T = length of time-series
- $p=$ number of properties
- $k=$ (eqv.) number of static properties <= p
(*) All edge and node parameters might not display time-dependence.
(**) D. Sawitski, Implicit Maximization of Flows over Time, Technical Report (R:01276), University of Dortmund, 2004.

TAG vs. TEG: Storage Cost Comparison

Minneapolis CBD
[1/2, 1, 2, 3 miles radii]
Trend: TAG better than TEG on storage overhead!

Dataset	\# Nodes	\# Edges
(MPLS -1/2)	111	287
(MPLS -1 mi)	277	674
(MPLS - 2 mi)	562	1443
(MPLS - 3 mi)	786	2106

TEG vs. TAG

- TEG has High Storage Overhead
- Redundancy of nodes across time-frames
- Additional edges across time frames in TEG.
- TEG $=>$ Computationally expensive Algorithms
- Increased Network size due to redundancy.
- TEG => Inadequate support for modeling non-flow parameters on edges in TEG.
- TEG $=>$ Lack of physical independence of data

Outline

- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Time aggregated Graph
- Capacity Constraint Route Planner
- Dealing with non-stationary ST Networks
- Evaluation
- Conclusion and Future works

Capacity Constrained Route Planning (CCRP)

- Time-series attributes

Available_Node_Capacity (Ni, t)
= \#additional evacuees that can stay at node Ni at time t
Available_Edge_Capacity (Ni -Nj, t)
= \#additional evacuess that may travel via edge $\mathrm{Ni}-\mathrm{Nj}$ at time t

- Generalize shortest path algorithms to
- Honor capacity constraints
- Spread people over space and time
- Comparison with TEG+LP Approach
- Faster and more scalable
- Easier to use:
- Does not require user provided time upper bound
- Does not require post-processing to construct routes
- Modular, i.e. can interface with transportation models
- Determining link capacity as a function of occupancy

Psuedo-code for Capacity Constrained Route Planner (CCRP)

While (any source node has evacuees) do
Step 1: Find nearest pair (Source S, Destination D), based on current available capacity of nodes and edges.

Step 2: Compute available flow on shortest route $R(S, D)$

$$
\left.\begin{array}{rl}
\text { flow }=\min \{ & \text { number of current evacuees at } \mathrm{S}, \\
& \text { Available_Edge_Capacity }(\text { any edges on } \mathrm{R}), \\
& \text { Available_Node_Capacity }(\text { any nodes on } \mathbf{R})
\end{array}\right\}
$$

Step 3: Make reservation of capacity on route R
Available capacity of each edge on R reduced by flow
Available capacity of each incoming nodes on R reduced by flow

Summary:

- Each iteration generate route and schedule for one group of evacuee.
- Destination capacity constrains can be accommodated is needed
. Solution evacuation plan observes capacity constraints of network
- Wait at intermediate nodes addressed later non-stationary extension

Example Input: Evacuation Network with Evacuees

Node

Node ID, Max Capacity
(Initial Occupancy)

Edge
(Max Capacity, Travel time)

Destination node

CCRP Execution Trace

Iteration: 1

Quickest route between source/destination pair:
$\boldsymbol{R}:$ (route with earliest destination arrival time)

Number. of Evacuees on Route R: 6

Source	Destination	Dest. Arrival Time	No. of Evacuees
N1	N 13	14	3
N1	N 14	15	3
N2	N 13	14	3
N2	N 14	15	3
N8	N 13	4	6
N8	N 14	5	3

Node:
Node ID, Max Capacity (Initial Occupancy)

Edge:
(Max Capacity, Travel time)

Edge reservation table:
Each cell represents one time point (T0 - T15):

$\mathrm{T0}$	T 1	T 2	T 3
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15

e.g.

Available edge capacity at time 3 is reduced to 5

CCRP Execution Trace

Iteration: 2

Quickest route between source/destination pair:

$\boldsymbol{R}:$ (route with earliest destination arrival time)

Node:
Node ID, Max Capacity (Initial Occupancy)

Edge:
(Max Capacity, Travel time)

Edge reservation table:
Each cell represents one time point (T0 - T15):

$\mathrm{T0}$	T 1	T 2	T 3
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15

e.g.

8	8	5	8
8	8	8	8
8	8	8	8
8	8	8	8

Available edge capacity at time 3 is reduced to 5

CCRP Execution Trace

Iteration: 3

Quickest route between source/destination pair:
$\boldsymbol{R}:$ (route with earliest destination arrival time)

Node:	$\mathbf{N} 8$	$\mathbf{N} 11$	$\mathbf{N} 14$
Start Time:	0	3	5

Number. of Evacuees on Route R: 3

Source	Destination	Dest. Arrival Time	No. of Evacuees
N1	N13	14	3
N1	N14	15	3
N2	N13	14	3
N2	N14	15	3
N8	N13	6	3
N8	N14	5	3

Node:
Node ID, Max Capacity (Initial Occupancy)

Edge:
(Max Capacity, Travel time)

Edge reservation table:
Each cell represents one time point (T0 - T15):

$\mathrm{T0}$	T 1	T 2	T 3
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15

e.g.

Available edge capacity at time 3 is reduced to 5

CCRP Execution Trace

Iteration: 4

Quickest route between source/destination pair:
$\boldsymbol{R}:$ (route with earliest destination arrival time)

- $\cdot \cdots \cdots+\cdots$	Source	Destination	Dest. Arrival Time	No. of Evacuees
	N1	N13	14	3
	N1	N14	15	3
	N2	N13	14	3
	N2	N14	15	3
77				

 Time:

Number. of Evacuees on Route R: 3

Node:
Node ID, Max Capacity (Initial Occupancy)

Edge:
(Max Capacity, Travel time)

Edge reservation table:

Each cell represents one time point (T0 - T15):

$\mathrm{T0}$	T 1	T 2	T 3
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15

e.g.

8	8	5	8
8	8	8	8
8	8	8	8
8	8	8	8

Available edge capacity at time 3 is reduced to 5

CCRP Execution Trace

Iteration: 5

Quickest route between source/destination pair:
$\boldsymbol{R}:$ (route with earliest destination arrival time)

Number. of Evacuees on Route R: 3
Node: N8

Start 0

Time:
Number. of Evacuees on Route R: 3

Design Decision 1: Algorithm for Step 1

Step 1:

Finding route \boldsymbol{R} among routes between all (source, destination) pairs.

Sources

Three choices:

1. $\boldsymbol{n} \times \boldsymbol{m}$ single-source single-destination shortest path search: 1 per ($\left.\mathbf{S}_{\boldsymbol{i}}, \mathbf{d}_{\boldsymbol{j}}\right)$ pair.
2. n single-source all-destination shortest path search: 1 per source node.
3. One shortest path search:

- Add super source node and super destination node to network.
- One shortest path search from super source node to super destination node.

Choice: one shortest path search
Rationale: lower computational cost

Design Decision 1: Algorithm for Step 1 (2/2)

Finding Route \boldsymbol{R} among routes between all (source, destination) pairs:

Find Route R with one Shortest Path Search:
If route $<\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{x}}, \ldots, \mathrm{d}_{y}, \mathrm{~d}_{0}>$ is the shortest route between \mathbf{S}_{0} and \mathbf{d}_{0}, then $<\mathrm{S}_{\mathrm{x}}, \ldots, \mathrm{d}_{\mathrm{y}}>$ must be the shortest route \boldsymbol{R} between any (source, destination) pair.

Design Decision 2 - Choice of Shortest Path Algorithms

Shortest path algorithm for graph with non-negative edge length:

Three Choices:

1. Family of Dijkstra's algorithm:

Original Dijkstra's algorithm: [Dijkstra, 1959].
Survey of implementations: [Cherkassky, Goldberg and Radzik, 1993].
2. A* search algorithm for shortest path: [Nilsson, 1980], [Goldberg, 2004].
3. Hierarchical routing algorithm: [Shekhar, 1997], [Rundensteiner, 1998],

Choice: Dijkstra's algorithm
Rationale:

- A* search: effectiveness of heuristic function deteriorate in later iterations of CCRP due to change of available capacity.
- Hierarchical routing: pre-computed shortest path between partitions no longer hold in later iterations of CCRP due to change of available capacity.

Capacity Constrained Route Planner (CCRP)

```
Input:
    1) G(N,E): a graph G with a set of nodes N and a set of edges E;
    Each node }n\inN\mathrm{ has two properties:
        Maximum_Node_Capacity(n) : non-negative integer
        Initial_Node_Occupancy(n) : non-negative integer
        Each edge e\inE has two properties:
            Maximum_Edge_Capacity(e) : non-negative integer
            Travel_time(e) : non-negative integer
    2) S: set of source nodes, S\subseteqN;
    3) D: set of destination nodes, D\subseteqN;
Output: Evacuation plan : Routes with schedules of evacuees on each route
Method:
Pre-process network: add super source node so to network,
    link so to each source nodes with an edge which
    Maximum_Edge_Capacity () = \infty and Travel_time() =0;
while any source node s\inS has evacuee do {
    find route R< no, n},\ldots,\ldots,\mp@subsup{n}{k}{}>\mathrm{ with time schedule, such that R has the earliest
        destination arrival time among routes between all ( }s,d\mathrm{ ) pairs,
        where s}\inS,d\inD,\mp@subsup{n}{0}{}=s,\mp@subsup{n}{k}{}=d\mathrm{ ,
        using one generalized shortest path search from super source so to all destinations;
    flow = min( number of evacuee still at source node s,
                Available_Edge_Capacity(all edges on route R),
                        Available_Node_Capacity(all nodes from n}\mp@subsup{n}{1}{}\mathrm{ to }\mp@subsup{n}{k-1}{}\mathrm{ on route R),
                );
    for i=0 to k-1 do {
        t=start time from node }\mp@subsup{n}{i}{}\mathrm{ on route R ;
        (5)
        Available_Edge_Capacity (e}\mp@subsup{e}{\mp@subsup{n}{i}{}\mp@subsup{n}{i+1}{}}{},t) reduced by flow
        Available_Node_Capacity( }\mp@subsup{n}{i+1}{},t+\mathrm{ Travel_time (e}\mp@subsup{e}{\mp@subsup{n}{i}{}\mp@subsup{n}{i+1}{}}{}))\mathrm{ reduced by flow;
    }
}

\section*{Cost Model of CCRP}

Number of iterations: \(\boldsymbol{O}(\boldsymbol{p}) \quad \boldsymbol{p}\) : number of evacuees
Each iteration generates one group of evacuees,
Upper bound of number of groups = number of evacuees
Cost for each iteration: ( \(\boldsymbol{n}\) : number nodes, \(\boldsymbol{m}\) : number of edges )
Step 1 - Find route \(\boldsymbol{R}\) with one Dijkstra search:
Dijkstra ( naïve implementation): \(\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)\)
Dijkstra ( with heap structure): \(\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n l o g n})\)
for sparse graphs (e.g. road network) : m << nlogn
Cost of Step 1: O(nlogn)
Step 2 - Compute flow amount on route \(\boldsymbol{R}: \boldsymbol{O}(\mathbf{1})\)
Step 3 - Make reservations on route \(\boldsymbol{R}: \boldsymbol{O}(\boldsymbol{n})\)
Step 1 is dominant.
CCRP cost model: \(\boldsymbol{O}(\boldsymbol{p} \boldsymbol{n} \boldsymbol{\operatorname { l o g } \boldsymbol { n }})\)

\section*{Performance Evaluation: Experiment Design}


\section*{Goal:}
1. Compare CCRP with LP minimum cost flow solver (e.g. NETFLO):
- Solution Quality Measure: Evacuation egress time
- Performance Measure: Run-time
2. Test effect of independent parameters on solution quality and performance:
- Number of evacuees, number of source nodes, size of network (number of nodes).

Experiment Platform: CPU: Pentium 4 2GHz, RAM: 2GB, OS: Linux.

\section*{Performance Evaluation : Experiment Results 1}

\section*{Experiment 1: Effect of Number of Evacuees}

Setup: fixed network size \(=5000\) nodes, fixed number of source nodes \(=2000\) nodes, number of evacuees from 5,000 to 50,000 .


Figure 1 Quality of solution


Figure 2 Run-time
- CCRP produces high quality solution, solution quality drops slightly as number of evacuees grows.
- Run-time of CCRP is less than \(1 / 3\) that of NETFLO.
- CCRP is scalable to the number of evacuees.

\section*{Performance Evaluation : Experiment Results 2}

\section*{Experiment 2: Effect of Number of Source Nodes}

Setup: fixed network size \(=5000\) nodes, fixed number of evacuees \(=5000\), number of source nodes from 1,000 to 4,000 .


Figure 1 Quality of solution


Figure 2 Run-time
- CCRP produces high quality solution, solution quality not affected by number of source nodes.
- Run-time of CCRP is less than half of NETFLO.
- CCRP is scalable to the number of source nodes.

\section*{Performance Evaluation : Experiment Results 3}

\section*{Experiment 3: Effect of Network Size}

Setup: fixed number of evacuees \(=5000\), fixed number of source nodes \(=10\) nodes, number of nodes from 50 to 50,000.


Figure 1 Quality of solution


Figure 2 Run-time
- CCRP produces high quality solution, solution quality increases as network size grows.
- Run-time of CCRP is scalable to network size.

\section*{Outline}
- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Time aggregated Graph
- Capacity Constraint Route Planner
- Dealing with non-stationary networks
- Evaluation
- Computer Science - Theoretical, Experimental
- Case Studies - Nuclear Power Plant, Homeland Security
- Conclusion and Future works

\section*{Example: Ranking Alternative Routes}

Consider paths from N8 to Outside
Path \(1: \mathrm{N} 8 \rightarrow \mathrm{~N} 10 \rightarrow \mathrm{~N} 13\)
Path 2: N8 \(\rightarrow\) N11 \(\rightarrow\) N14
Ranking is time dependent (non-stationary)
\(\mathrm{t}=0\), travel time \((\) Path 1\()=4<\) travel time \((\) Path 2\()=5\)
\(\mathrm{t}=1,[\) travel time \((\) Path 1\()=5]=[\) travel time \((\) Path 2\()=5]\)


Node

Node ID, Max Capacity (Initial Occupancy)

\section*{Destination node}

Node ID

\section*{Non-stationary Networks: Challenges}
- Violation of optimal prefix property
\(\square\) Not all optimal paths show optimal prefix property.
\(\square\) New and Alternate semantics
- Termination of the algorithm: an infinite non-negative cycle over time

\section*{Challenge for Routing Algorithms}

\section*{Ranking of \\ alternate routes}
\begin{tabular}{|c|c|}
\hline  & Dijkstra's, A*.... \\
\hline
\end{tabular}

\section*{Proposed Approach - Key Idea}

\section*{When start time is fixed, earliest arrival \(\Rightarrow\) least travel time (Shortest path)}

\section*{Arrival Time Series Transformation (ATST) the network:}
travel times \(\rightarrow\) arrival times at end node \(\rightarrow\) Min. arrival time series


\section*{V}

Result is a Stationary TAG.

Greedy strategy (on cost of node, earliest arrival) works!!


\section*{Contributions (Broader Picture)}
- Time Aggregated Graph (TAG)
- Routing Algorithms
\begin{tabular}{|c|l|l|}
\hline & \multicolumn{1}{|c|}{ FIFO } & \multicolumn{1}{c|}{ Non-FIFO } \\
\hline \begin{tabular}{c} 
Fixed Start \\
Time
\end{tabular} & \begin{tabular}{l} 
(1) Greedy (SP-TAG) \\
(2) A* search (SP-TAG*)
\end{tabular} & (4) NF-SP-TAG \\
\hline \begin{tabular}{c} 
Best Start \\
Time
\end{tabular} & \begin{tabular}{l} 
(3) Iterative A* search \\
(TI-SP-TAG*)
\end{tabular} & \begin{tabular}{l} 
(5) Label Correcting (BEST) \\
(6) Iterative NF-SP-TAG
\end{tabular} \\
\hline
\end{tabular}

\section*{Outline}
- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation Case Studies
- Nuclear Power Plant
- Homeland Security
- Hajj, Mecca
- Conclusion and Future works

\section*{A Real Scenario: Montecillo Nuclear Power Plant}


\section*{A Real Scenario: Monticello Emergency Planning Zone and Population}

Emergency Planning Zone (EPZ) is a 10 -mile radius around the plant divided into sub areas.


Monticello EPZ

\section*{Subarea Population}
\begin{tabular}{ll} 
& \\
2 & 4,675 \\
5 N & 3,994 \\
5 E & 9,645 \\
5 S & 6,749 \\
5 W & 2,236 \\
10 N & 391 \\
10E & 1,785 \\
10SE & 1,390 \\
10S & 4,616 \\
10SW & 3,408 \\
10W & 2,354 \\
10NW & 707 \\
Total & \(\mathbf{4 1 , 9 5 0}\)
\end{tabular}

Estimate EPZ evacuation time: Summer/Winter(good weather): 3 hours, 30 minutes Winter (adverse weather): 5 hours, 40 minutes

Data source: Minnesota DPS \& DHS
Web site: http://www.dps.state.mn.us http://www.dhs.state.mn.us

\section*{A Real Scenario : New Plan Routes}


\section*{Outline}
- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation Case Studies
- Nuclear Power Plant
- Homeland Security (Note: use FoxTV clip)
- Hajj, Mecca
- Conclusion and Future works

\section*{Case Study 2 - Metropolitan Wide Evacuation Planning}

\section*{Mandate - DHS Requirement}

\section*{Objectives}
- Coordinate evacuation plans of individual communities
- Reduce conflicts across component plans
- due to the use of common highways

Timeframe: January - November 2005

\section*{Twin Cities Metro Evacuation PLAN}

\author{
TECHNICAL Memorandum \#1
}

\section*{Metropolitan Wide Evacuation Planning - 2}

\section*{Advisory Board}

MEMA/Hennepin Co. -
Dakota Co. (MEMA) -
Minneapolis Emergency Mgt. -
St. Paul Emergency Mgt. -
Minneapolis Fire -
DPS HSEM -
DPS Special Operations -
DPS State Patrol -

Tim Turnbull, Judith Rue
David Gisch
Rocco Forte, Kristi Rollwagen
Tim Butler
Ulie Seal
Kim Ketterhagen, Terri Smith
Kent O’Grady
Mark Peterson

\section*{Workshops}

Over 100 participants from various local, state and federal govt.

\section*{Workshop Participants}

\section*{Federal, State, County, City}

Gerald Liibbe, Federal Highway Administration (FHWA) Katie Belmore, Representing Wisconsin Department of Transportation

\section*{Airports}

George Condon, Metropolitan Airports Commission

\section*{Businesses}

Chris Terzich, Minnesota Information Sharing and Analysis Center Barry Gorelick, Minnesota Security Board

Communications and Public Information
Kevin Gutknecht, Mn/DOT
Lucy Kender, Mn/DOT
Andrew Terry, Mn/DOT

\section*{Dispatch}

Keith Jacobson, Mn/DOT

\section*{Education}

Bob Fischer, Minnesota Department of Education Dick Guevremont, Minnesota Department of Education

\section*{Emergency Management}

Bruce Wojack, Anoka County Emergency Management Tim Walsh, Carver County Emergency Management Jim Halstrom, Chisago County Emergency Management
David Gisch, Dakota County Emergency Preparedness
Tim O'Laughlin, Scott County Sheriff - Emergency Management
Tim Turnbull, Hennepin County Emergency Preparedness
Judith Rue, Hennepin County Emergency Preparedness
Rocco Forte, Minneapolis Fire Department - Emergency Preparedness Kristi Rollwagen, Minneapolis Fire Department -Emergency Preparedness William Hughes, Ramsey County Emergency Management and Homeland Security
Tim Butler, St. Paul Fire and Safety Services
Deb Paige, Washington County Emergency Management
Kim Ketterhagen, Department of Public Safety (DPS) HSEM
Sonia Pitt, Mn/DOT HSEM
Bob Vasek, Mn/DOT HSEM

\section*{Fire}

Gary Sigfrinius, Forest Lake Fire Department

\section*{Health}

Debran Ehret, Minnesota Department of Health

\section*{Hospitals}

Dan O'Laughlin, Metropolitan Hospital Compact

\section*{Human Services}

Glenn Olson, Minnesota Department of Human Services

\section*{Law Enforcement}

Brian Johnson, Hennepin County Sheriff
Jack Nelson, Metro Transit Police Department
David Indrehus, Metro Transit Police Department Otto Wagenpfeil, Minneapolis Police Department

Kent O'Grady, Minnesota State Patrol
Mark Peterson, Minnesota State Patrol
Chuck Walerius, Minnesota State Patrol
Douglas Biehn, Ramsey County Sheriff's Office Mike Morehead, St. Paul Police

\section*{Maintenance and Operations}

Beverly Farraher, Mn/DOT
Gary Workman, Mn/DOT
Robert Wryk, Mn/DOT

\section*{Military}

Daniel Berg, Marine Safety Office St.
Louis Planning Division
Eric Waage, Minnesota National Guard

\section*{Planning}

Connie Kozlak, MetCouncil

\section*{Public Works}

Bill Cordell, Wright County
Jim Gates, City of Bloomington
Jim Grube, Hennepin County
Bob Winter, Mn/DOT
Klara Fabry, City of Minneapolis
Mark Kennedy, City of Minneapolis Gary Erickson, Hennepin County Dan Schacht, Ramsey County

\section*{Safety}

Thomas Cherney, Minnesota Department of Public Safety Doug Thies, Mn/DOT

\section*{Security}

Terri Smith, Minnesota Homeland Security Emergency Management
Paul Pettit, Transportation Security Administration

\section*{Transit}

Dana Rude, Metro Mobility
Steve McLaird, MetroTransit
Christy Bailly, MetroTransit
David Simoneau, SouthWest Metro Transit

\section*{Traffic}

Thomas Bowlin, City of Bloomington
Jon Wertjes, City of Minneapolis
Bernie Arseneau, Mn/DOT
Amr Jabr, Mn/DOT
Eil Kwon, Mn/DOT
Paul St. Martin, City of St. Paul

\section*{Trucking}

John Hausladen, Minnesota Trucking Association

\section*{University}

Dan JohnsonPowers,
University of Minnesota Emergency Management

\section*{Task-structure}


\section*{Road Networks}

\section*{1. TP+ (Tranplan) road network for Twin Cities Metro Area}

Source: Met Council TP+ dataset
Summary:
- Contain freeway and arterial roads with road capacity, travel time, road type, area type, number of lanes, etc.
- Contain virtual nodes as population centroids for each TAZ.

Limitation: No local roads (for pedestrian routes)

\section*{2. MnDOT Basemap}

Source: MnDOT Basemap website (http://www.dot.state.mn.us/tda/basemap)
Summary: Contain all highway, arterial and local roads.
Limitation: No road capacity or travel time.

\section*{Demographic Datasets}

\section*{1. Night time population}
- Census 2000 data for Twin Cities Metro Area
- Source: Met Council Datafinder (http://www.datafinder.org)
- Summary: Census 2000 population and employment data for each TAZ.
- Limitation: Data is 5 years old; day-time population is different.

\section*{2. Day-time Population}
- Employment Origin-Destination Dataset (Minnesota 2002)
- Source: MN Dept. of Employment and Economic Development
- Contain work origin-destination matrix for each Census block.
- Need to aggregate data to TAZ level to obtain:

Employment Flow-Out: \# of people leave each TAZ for work.
Employment Flow-In: \# of people enter each TAZ for work.
- Limitation: Coarse geo-coding => Omits \(10 \%\) of workers
- Does not include all travelers (e.g. students, shoppers, visitors).

\section*{Defining A Scenario}

\section*{State Fairgrounds, Daytime , 1 Mile Src - 2 Mile Dst,}


\section*{Reviewing Resulting Evacuation Routes}

State Fairgrounds, Daytime, 1 Mile Src - 2 Mile Dst,

Evacuation Planning System for Twin Cities Metro Area
Step 3 of 3: Evacuation Route Plan
(go home)
Scenario Name:
User Defined

Evacuation Radius
Src Radius: 1 mile
Dst Radius: 2 mile

\section*{Population Estimate}

Original Estimate: 14431 (details) Adjusted Estimate: 14431

Time of Day: Daytime
Analysis Result
Number of destinations: 45
Evacuation Time: 3 hr(s) 16 min
Zoom \(\ln (x 4)\)
Zoom In (x2)

Zoom Out (x2)
Zoom Out (x4)

Results with routes
- Web-based
- Easy Installation
- Easy Maintenance
- Advanced Security
- Simple Interface
- User friendly and intuitive
- Comparison on the fly
- Changeable Zone Size
- Day vs. Night Population
- Driving vs. Pedestrian Mode
- Capacity Adjustment
- Visualized routes

\section*{An Easy to Use Graphic User Interface}



Walking Routes
Driving Routes
Arterial Closures
Freeway DMS Locations LRT Station
Freeway Closure Locations Bus Garage Locations Pedestrian/Transit Pickup Location \({ }^{\circ}\)

\section*{Common Usage of the tool}
- Current Usage : Compare options
- Ex.: transportation modes
- Walking may be better than driving for 1-mile scenarios
- Ex.: Day-time and Night-time needs
- Population is quite different
- Potential Usage: Identify bottleneck areas and links
- Ex.: Large gathering places with sparse transportation network
- Ex.: Bay bridge (San Francisco),
- Potential: Designing / refining transportation networks
- Address evacuation bottlenecks
- A quality of service for evacuation, e.g. 4 hour evacuation time

\section*{Finding: Pedestrians are faster than Vehicles!}

Five scenarios in metropolitan area
Evacuation Zone Radius: 1 Mile circle, daytime
\begin{tabular}{|c|c|c|c|c|}
\hline Scenario & Population & Vehicle & Pedestrian & Ped / Veh \\
\hline Scenario A & 143,360 & 4 hr 45 min & 1 hr 32 min & 32\% \\
\hline Scenario B & 83,143 & 2 hr 45 min & 1 hr 04 min & 39\% \\
\hline Scenario C & 27,406 & 4 hr 27 min & 1 hr 41 min & 38\% \\
\hline Scenario D & 50,995 & 3 hr 41 min & 1 hr 20 min & 36\% \\
\hline Scenario E & 3,611 & 1 hr 21 min & 0 hr 36 min & 44\% \\
\hline
\end{tabular}

\section*{Finding: Pedestrians are faster than Vehicles!}

\section*{If number of evacuees > bottleneck capacity of network}


Small scenario -
1 mile radius circle around State Fairground

Driving / Walking Evacuation Time Ratio with regard to \# of Evacuees

\section*{Key finding 2 - Finding hard to evacuate places!}
- Scenario C is a difficult case
- Same evacuation time as A, but one-fourth evacuees!
- Consider enriching transportation network around C ?


Number of Evacuees (Day Time) with 1 mile radius

\section*{FoxTV newsclip (5-minutes), Disaster Area Evacuation Analytics Project}
https://www.youtube.com/watch?v=PR9k72W8XK8


\section*{Outline}
- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation Case Studies
- Nuclear Power Plant
- Homeland Security
- Jamurat Bridge, Tent City, Hajj, Mecca

Intelligent Shelter Allotment for Emergency Evacuation Planning: A Case Study of Makkah, Intelligent Systems, IEEE, 30(5):66-76, 2015..
- Conclusion and Future works

\section*{Jamarat Bridge}


\section*{Flash Flood Scenario}


\section*{Jamarat \(3^{\text {rd }}\) Floor}
- Ramp for third floor is almost complete.
- Previously they are using escalators like escalators building 3 and 4 are specifically for \(3^{\text {rd }}\) and \(4^{\text {th }}\) floor.
- They are not connected on \(1^{\text {st }}\) and \(2^{\text {nd }}\) floor.
- For Entry/Exit they can use ramps as well as escalator.

\section*{3 \({ }^{\text {rd }}\) Floor Ramp connected through King Fahad Road}


\section*{3rd Floor 2 Entry Ramp}
(ap
3rd Floor Exit Ramp (

 \(\qquad\)

号
3rd Floor Exit Ramp號


\section*{Type of Road Network}

1) D Helbing and A Johansson, Dynamics of crowd disasters: An empirical study Physical review E, 2007
2) Rl Hughec The flow of human crowide \(\Delta\) nnual roviow of fluid mochanice 2003

\section*{Escalators}
- For each Escalator building and for each floor, we have 8 escalators.
- At a time 2 persons stand together at 1 step of escalator and it will take 60 second to go from one floor to another.
- 8 escalator * 2 person * 1 meter/sec=16 persons /sec.
- One hour(3600 sec)=

16*3600=57,600persons/hour (Capacity) Person can go from one floor to another.

\section*{Escalators(Contd..)}
- Escalators building 1,2,3,4 for entry only.
- Escalators building 5,6,7,8,9,10,11 for exit only.
- See next slide for escalator building details

\section*{Escalators/Stairs}


\section*{Escalators/Stairs}


\section*{Open Area}
- See the latest pic taken on 08-oct-2012 on next slide. They have put fences, so I don't think that now we can consider any open area.
- The demarcated areas on ground floor are in fact meant to channelize crowed, park emergency vehicles and have breathing space avail to regulate the crowd, allow a little of breathing space during critical period, but certainly not available to

\section*{Open Area}


\section*{King Abdul Aziz/Fahad Road}
- Both the roads are 6-lane divide highways, 3 lane on each side, with 11 m clear width of roadway on each sides
- Each side is 11 m width. If all six lanes are made uni-directional, the width would be 22m.
- So capacity is 39,600 persons/hour.

\section*{Related work}

\section*{ \\ Overlap Risk (zones, routes)}

\section*{Experimental Result}


\section*{Experimental Result}


CCRP : 2 shelters I-CARE : 2 shelters NES : 1 shelter

\section*{Experimental Result}


\section*{Outline}
- Motivation
- Problem Statement
- Why is the problem hard?
- Related Work
- Proposed Approach
- Evaluation Case Studies
- Nuclear Power Plant
- Homeland Security
- Conclusion and Future works

\section*{Summary Messages}
- Evacuation Planning is critical for homeland defense
- Existing methods can not handle large urban scenarios
- Communities use hand-crafted evacuation plans
- New Methods from Our Research
- Can produce evacuation plans for large urban area
- Reduce total time to evacuate!
- Improves current hand-crafted evacuation plans
- Ideas somewhat tested in the field

\section*{Current Limitations \& Future Work}
- Evacuation time estimates
- Approximate and optimistic
- Assumptions about available capacity, speed, demand, etc.
- No model for pedestrians, bikes, public transportation, etc.
- Quality of input data
- Population and road network database age!
- Ex.: Rosemount scenario - an old bridge in the roadmap!
- Data availability
- Pedestrian routes (links, capacities and speed)
- On-line editing capabilities
- Taking out a link (e.g. New Orleans bridge flooding) !

\section*{Future Work Across Disciplines}
- Data Availability
- Estimating evacuee population, available transport capacity
- Pedestrian data: walkway maps, link capacities based on width
- Traffic Eng.
- Link capacity depends on traffic density
- Modeling traffic control signals, ramp meters, contra-flow, ...
- Evacuee Behavior
- Unit of evacuation: Individual or Household
- Heterogeneity: by physical ability, age, vehicle ownership, language, ...
- Policy Decisions
- How to gain public's trust in plans? Will they comply?
- When to evacuate? Which routes? Modes? Shelters? Phased evacuation?
- Common good with awareness of winners and losers due to a decision
- Science
- How does one evaluate an evacuation planning system ?
- How do we calibrate parameters?```

