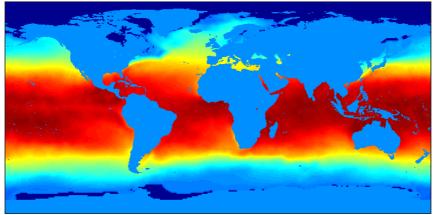
Spatial Data Mining: Accomplishments and Research Needs

Shashi Shekhar Department of Computer Science and Engineering University of Minnesota

Sea Surface Temperature (SST) in March, 1982



Why Data Mining?

 \star Holy Grail – <u>Informed</u> Decision Making

\star Lots of Data are Being Collected

- Business Applications:
 - Transactions: retail, bank ATM, air travel, etc
 - Web logs, e-commerce, GPS-track
- Scientific Applications:
 - Remote sensing: e.g., NASA's Earth Observing System
 - Sky survey
 - Microarrays generating gene expression data

\star Challenges:

- Volume (data) \gg number of human analysts
- Some automation needed
- * Data Mining may help!
 - Provide better and custmized insights for business
 - Help scientists for hypothesis generation

Spatial Data

\star Location-based Services

• Ex: MapQuest, Yahoo Maps, Google Maps, MapPoint

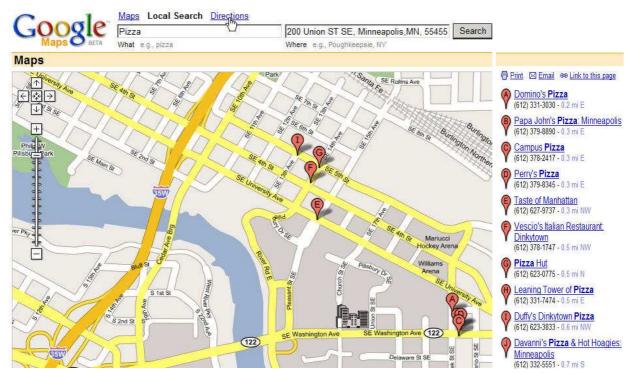


Figure 1: Google Local Search (http://maps.google.com)

 \star In-car Navigation Device

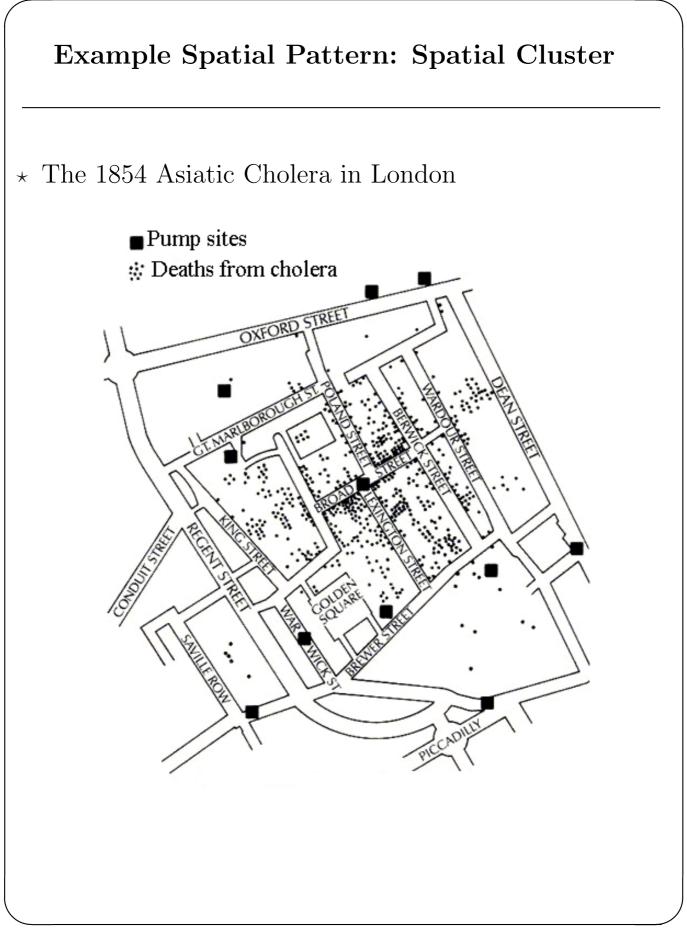
Figure 2: Emerson In-Car Navigation System (In Coutesy of Amazon.com)

Spatial Data Mining (SDM)

- $\star\,$ The process of discovering
 - interesting, useful, non-trivial patterns
 - patterns: non-specialist
 - exception to patterns: specialist
 - from large spatial datasets
- \star Spatial patterns
 - Spatial outlier, discontinuities
 - bad traffic sensors on highways (DOT)
 - Location prediction models
 - model to identify habitat of endangered species
 - Spatial clusters
 - crime hot-spots (NIJ), cancer clusters (CDC)
 - Co-location patterns
 - predator-prey species, symbiosis
 - Dental health and fluoride

Location As Attribute

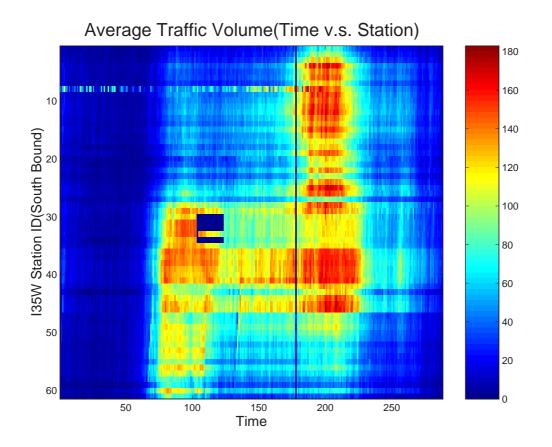
- \star Location as attribute in spatial data mining
- \star What value is location as an explanatory variable?
 - most events are associated with space and time
 - surrogate variable
 - critical to data analyses for many application domains
 - physical science
 - social science
- \star Location helps bring rich contexts
 - Physical: e.g., rainfall, temperature, and wind
 - Demographical: e.g., age group, gender, and income type
 - Problem-specific
- \star Location helps bring relationships
 - e.g., distance to open water



Spatial Data Mining: Accomplishments and Research Needs

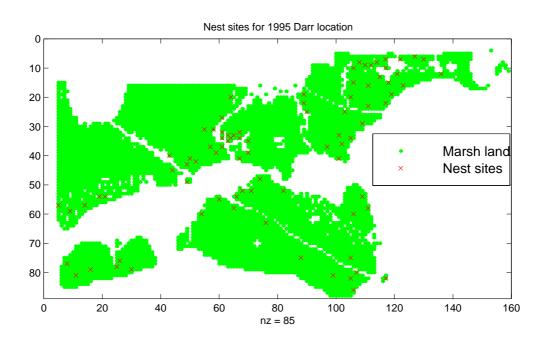
Example Spatial Pattern: Spatial Outliers

- \star Spatial Outliers
 - Traffic Data in Twin Cities
 - Abnormal Sensor Detections
 - Spatial and Temporal Outliers



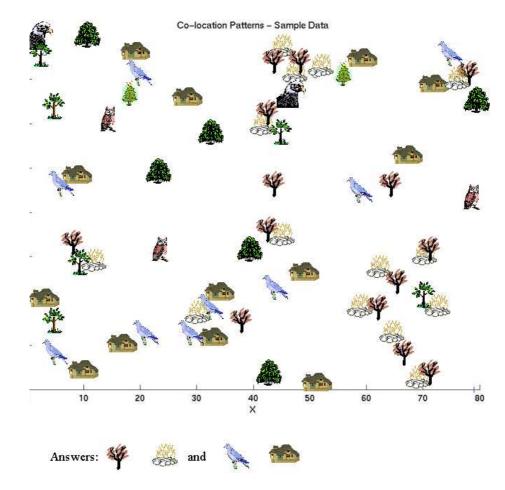
Example Spatial Pattern: Predictive Models

- \star Location Prediction: Bird Habitat Prediction
 - Given training data
 - Predictive model building
 - Predict new data



Example Spatial Pattern: Co-locations (backup)

- * Given:
 - A collection of different types of spatial events
- \star Illustration



 \star Find: Co-located subsets of event types

Spatial Data Mining: Accomplishments and Research Needs

What's NOT Spatial Data Mining

- * Simple Querying of Spatial Data
 - Find neighbors of Canada given names and boundaries of all countries
 - Find shortest path from Boston to Houston in a freeway map
 - Search space is not large (not exponential)
- $\star\,$ Testing a hypothesis via a primary data analysis
 - Ex. Female chimpanzee territories are smaller than male territories
 - Search space is not large !
 - SDM: secondary data analysis to generate multiple plausible hypotheses
- $\star\,$ Uninteresting or obvious patterns in spatial data
 - Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul, Given that the two cities are 10 miles apart.
 - Common knowledge: Nearby places have similar rainfall
- $\star\,$ Mining of non-spatial data
 - Diaper sales and beer sales are correlated in evening

Application Domains

- \star Spatial data mining is used in
 - NASA Earth Observing System (EOS): Earth science data
 - National Inst. of Justice: crime mapping
 - Census Bureau, Dept. of Commerce: census data
 - Dept. of Transportation (DOT): traffic data
 - National Inst. of Health(NIH): cancer clusters
 - Commerce, e.g. Retail Analysis
- \star Sample Global Questions from Earth Science
 - How is the global Earth system changing?
 - What are the primary forcings of the Earth system?
 - How does the Earth system respond to natural and humanincluded changes?
 - What are the consequences of changes in the Earth system for human civilization?
 - How well can we predict future changes in the Earth system

Example of Application Domains

- * Sample Local Questions from Epidemiology[TerraSeer]
 - What's overall pattern of colorectal cancer?
 - Is there clustering of high colorectal cancer incidence anywhere in the study area?
 - Where is colorectal cancer risk significantly elevated?
 - Where are zones of rapid change in colorectal cancer incidence?

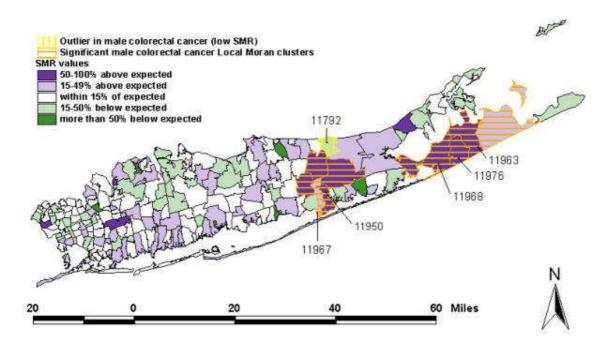


Figure 3: Geographic distribution of male colorectal cancer in Long Island, New York(in courtesy of TerraSeer)

Business Applications

- * Sample Questions:
 - What happens if a new store is added?
 - How much business a new store will divert from existing stores
 - Other "what if" questions:
 - changes in population, ethic-mix, and transportation network
 - changes in retail space of a store
 - changes in choices and communication with customers
- * Retail analysis: Huff model [Huff, 1963]
 - A spatial interaction model
 - Given a person p and a set s of choices
 - $\Pr[\text{person } p \text{ selects choice } c] \propto \text{perceived_utility}(\forall c \in S, p)$
 - perceived_utility(store c, person p) = f (square-footage(c), distance (c, p), parameters)
 - Connection to SDM
 - Parameter estimation, e.g., via regression
 - For example:
 - Predicting consumer spatial behaviors
 - Delineating trade areas
 - Locating retail and service facilities
 - Analyzing market performance

Map Construction

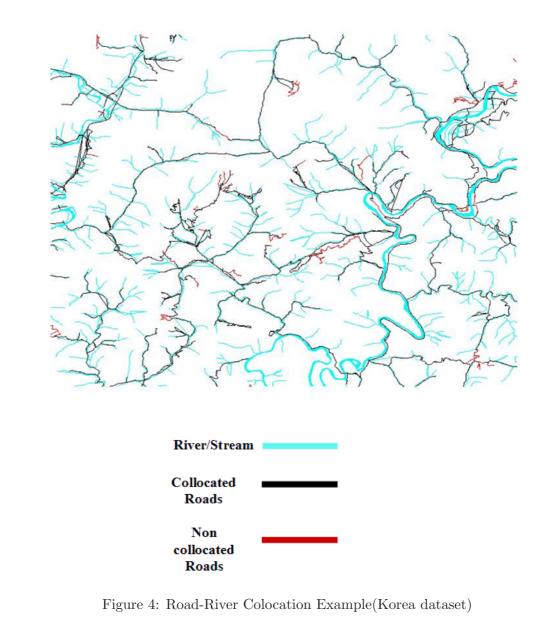
- * Sample Questions
 - Which features are anomalous?
 - Which layers are related?
 - How can the gaps be filled?
- $\star\,$ Korea Data
 - Latitude 37deg15min to 37deg30min
 - Longitude 128deg23min51sec to 128deg23min52sec
- * Layers
 - Obstacles (Cut, embankment, depression)
 - Surface drainage (Canal, river/stream, island, common open water, ford, dam)
 - Slope
 - Soils (Poorly graded gravel, clayey sand, organic silt, disturbed soil)
 - Vegetation (Land subject to inundation, cropland, rice field, evergreen trees, mixed trees)
 - Transport (Roads, cart tracks, railways)

Colocation in Example Data

- \star Road: river/stream
- \star Crop land/rice fields: ends of roads/cart roads
- \star Obstacles, dams and islands: river/streams
- $\star\,$ Embankment obstacles and river/stream: clayey soils
- \star Rice, cropland, evergreen trees and deciduous trees :river/stream
- $\star\,$ Rice: clayey soil, wet soil and terraced fields
- \star Crooked roads: steep slope

Colocation Example

- * Interestingness
 - Patterns to Non-Specialist vs. Exceptions to Specialist
- \star Road-River/Stream Colocation



Spatial Data Mining: Accomplishments and Research Needs

SQL Example for Colocation Query

- * SQL3/OGC (Postgres/Postgis)
- * Detecting Road River Colocation Pattern:
 - Spatial Query Fragment

CREATE TABLE Road-River-Colocation AS SELECT DISTINCT R.* FROM River-Area-Table T, Road-Line-Table R WHERE distance (T.geom, R.geom) < 0.001;

CREATE TABLE Road-Stream-Colocation AS SELECT DISTINCT R.* FROM Stream-Line-Table T, Road-Line-Table R WHERE distance (T.geom, R.geom) < 0.001;

CREATE TABLE Cartroad-River-Colocation AS SELECT DISTINCT R.* FROM River-Area-Table T, Cartroad-Line-Table R WHERE distance (T.geom, R.geom) < 0.001;

CREATE TABLE Cartroad-Stream-Colocation AS SELECT DISTINCT R.* FROM Stream-Line-Table T, Cartroad-Line-Table R WHERE distance (T.geom, R.geom) < 0.001;

Colocation: Road-River

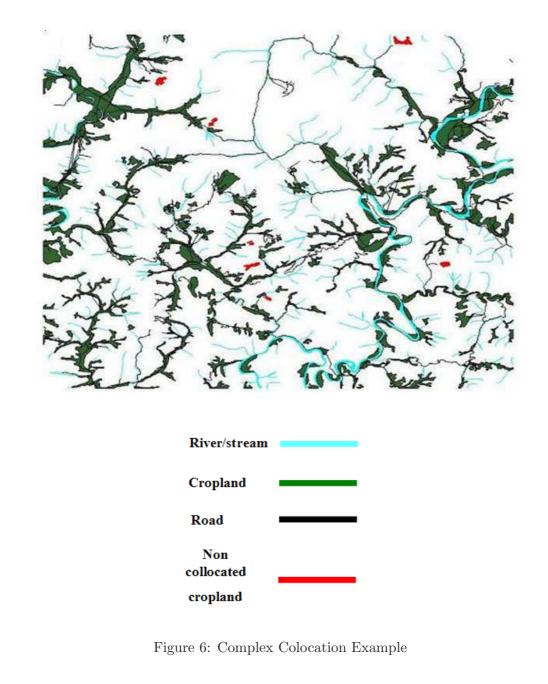
- \star 375 road features
- * Center-line to center-line distance threshold = 0.001 units (about 100 meters)
- $\star~77~\%$ of all roads colocated with river

Colocation Pattern	Number of Colocated Features	Interest Measure (%) (Colocated roads/Total roads)*100
Road with stream	153 of 239	64 %
Road with river	96 of 239	40 %
Road with stream or river	176 of 239	74 %
Cartroad with stream	97 of 136	71 %
Cartroad with river	44 of 136	32 %
Cartroad with stream or river	111 of 136	82 %
All roads with river or stream	287 of 375	77 %

Figure 5: Road-River Colocation Example(Korea dataset)

More Complex Colocation Examples

- * Complex Colocation/Outlier Example:
 - Cropland colocated with river, stream or road



Spatial Data Mining: Accomplishments and Research Needs

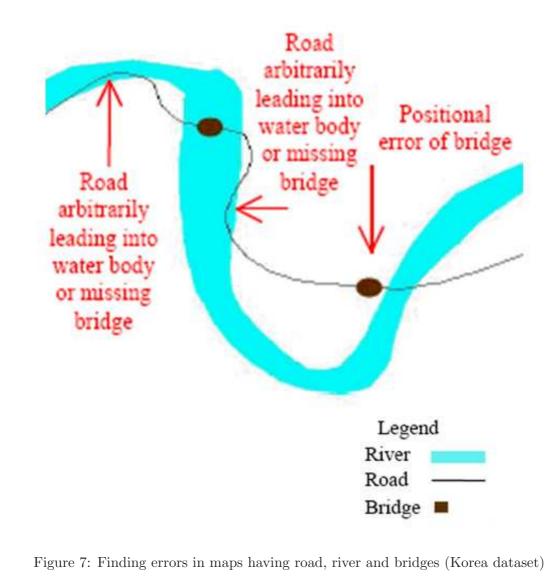
Outliers in Example Data

- \star Outlier detection
 - Extra/erroneous features
 - Positional accuracy of features
 - Predict mislabeled/misclassified features
- * Overlapping road and river
- $\star\,$ Road crossing river and disconnected road Stream mislabeled as river
- \star Cropland close to river and road
- \star Cropland outliers on edges

Outliers in Example

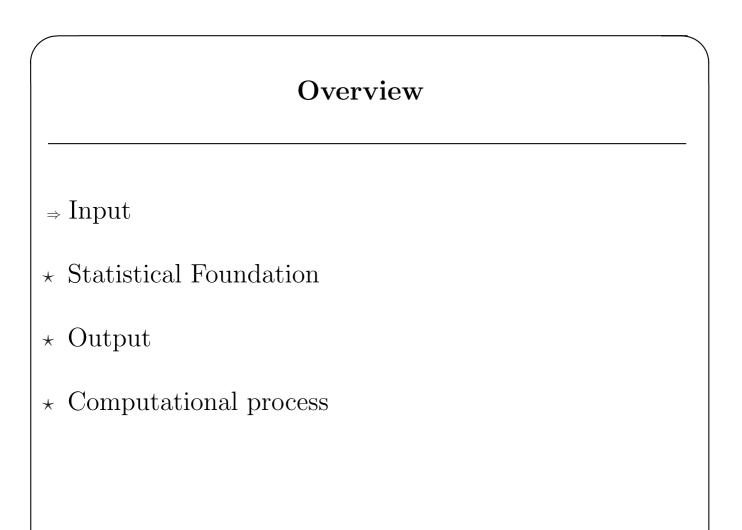
$\star\,$ Map production

- Identifying errors
 - e.g., expected colocation : (bridge, \cap (road, river))
 - violations illustrated below:



Overview

- * Spatial Data Mining
 - Find interesting, potentially useful, non-trivial patterns from spatial data
- * Components of Data Mining:
 - Input: table with many columns, domain(column)
 - Statistical Foundation
 - Output: patterns and interest measures
 - e.g., predictive models, clusters, outliers, associations
 - Computational process: algorithms



Overview of Input

* Data

• Table with many columns(attributes)

tid	f_1	f_2	 f_n
0001	3.5	120	 Yes
0002	4.0	121	 No

Table 1: Example of Input Table

- e.g., tid: tuple id; f_i : attributes
- Spatial attribute: geographically referenced
- Non-spatial attribute: traditional
- \star Relationships among Data
 - Non-spatial
 - Spatial

Data in Spatial Data Mining

- \star Non-spatial Information
 - Same as data in traditional data mining
 - Numerical, categorical, ordinal, boolean, etc
 - e.g., city name, city population
- \star Spatial Information
 - Spatial attribute: geographically referenced
 - Neighborhood and extent
 - Location, e.g., longitude, latitude, elevation
 - Spatial data representations
 - Raster: gridded space
 - Vector: point, line, polygon
 - Graph: node, edge, path

Figure 8: Raster and Vector Data for UMN Campus (in courtesy of UMN, MapQuest)

Relationships on Data in Spatial Data Mining

- $\star\,$ Relationships on non-spatial data
 - Explicit
 - Arithmetic, ranking(ordering), etc.
 - Object is_instance_of a class, class is a subclass_of another class, object is part_of another object, object is a membership_of a set
- $\star\,$ Relationships on Spatial Data
 - Many are **implicit**
 - Relationship Categories
 - Set-oriented: union, intersection, and membership, etc
 - Topological: meet, within, overlap, etc
 - Directional: North, NE, left, above, behind, etc
 - Metric: e.g., Euclidean: distance, area, perimeter
 - Dynamic: update, create, destroy, etc
 - Shape-based and visibility
 - Granularity

Granularity	Elevation Example	Road Example	
local	elevation	on_road?	
focal	slope	$adjacent_to_road?$	
zonal highest elevation in a zone		distance to nearest road	

Table 2: Examples of Granularity

OGC Model

\star Open GIS Consortium Model

- Support spatial data types: e.g. point, line, polygons
- Support spatial operations as follows:

Operator Type	Operator Name	
Basic Function	SpatialReference()	
	Envelope()	
	Export()	
	IsEmpty()	
	IsSimple()	
	Boundary()	
Topological/Set Operators	Equal	
	Disjoint	
	Intersect	
	Touch	
	Cross	
	Within	
	Contains	
	Overlap	
Spatial Analysis	Distance	
	Buffer	
	ConvexHull	
	Intersection	
	Union	
	Difference	
	SymmDiff	

Table 3: Examples of Operations in OGC Model

Mining Implicit Spatial Relationships

\star Choices:

- Materialize spatial info + classical data mining
- Customized spatial data mining techniques

Relationships		Materialization	Customized SDM Tech.
Topological	Neighbor, Inside, Outside	Classical Data Mining	NEM, co-location
Euclidean	Distance,	can be used	K-means
	density		DBSCAN
Directional	North, Left, Above		Clustering on sphere
Others	Shape, visibility		

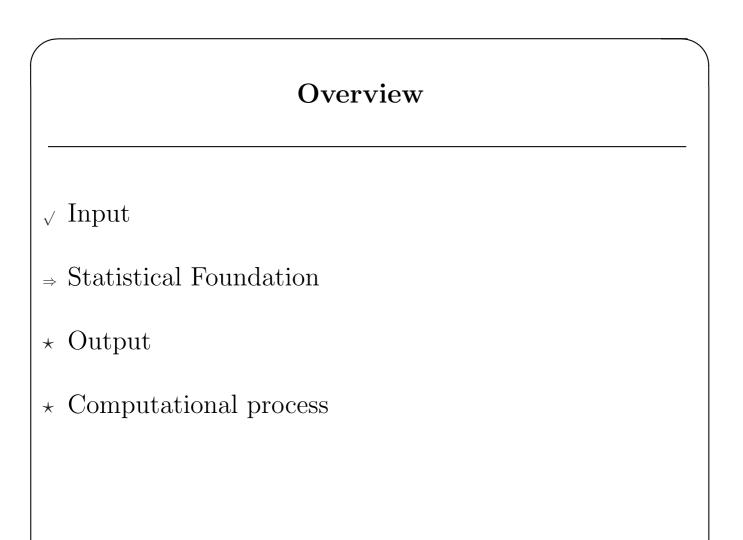
 Table 4: Mining Implicit Spatial Relationships

* What spatial info is to be materialized?

- Distance measure:
 - Point: Euclidean
 - Extended objects: buffer-based
 - Graph: shortest path
- Transactions: i.e., space partitions
 - Circles centered at reference features
 - Gridded cells
 - Min-cut partitions
 - Voronoi diagram

Research Needs for Data

- * Limitations of OGC Model
 - Aggregate functions e.g. mapcube
 - Direction predicates e.g. absolute, ego-centric
 - 3D and visibility
 - Network analysis
 - Raster operations
- $\star\,$ Needs for New Research
 - Modeling semantically rich spatial properties
 - Moving objects
 - Spatial time series data



Statistics in Spatial Data Mining

- \star Classical Data Mining
 - Learning samples are independently distributed
 - Cross-correlation measures, e.g., χ^2 , Pearson
- $\star\,$ Spatial Data Mining
 - Learning sample are **not independent**
 - Spatial Autocorrelation
 - Measures:
 - * distance-based(e.g., K-function)
 - * neighbor-based(e.g., Moran's I)
 - Spatial Cross-Correlation
 - Measures: distance-based, e.g., cross K-function
 - Spatial Heterogeneity

Overview of Statistical Foundation

- * Spatial Statistics[Cressie, 1991][Hanning, 2003]
 - Geostatistics
 - Continuous
 - Variogram: measure how similarity decreases with distance
 - Spatial prediction: spatial autocorrelation
 - Lattice-based statistics
 - Discrete location, neighbor relationship graph
 - Spatial Gaussian models
 - * Conditionally specified spatial Gaussian model
 - * Simultaneously specified spatial Gaussian model
 - Markov Random Fields, Spatial Autoregressive Model
 - Point process
 - Discrete
 - Complete spatial randomness (CSR): Poisson process in space
 - K-function: test of CSR

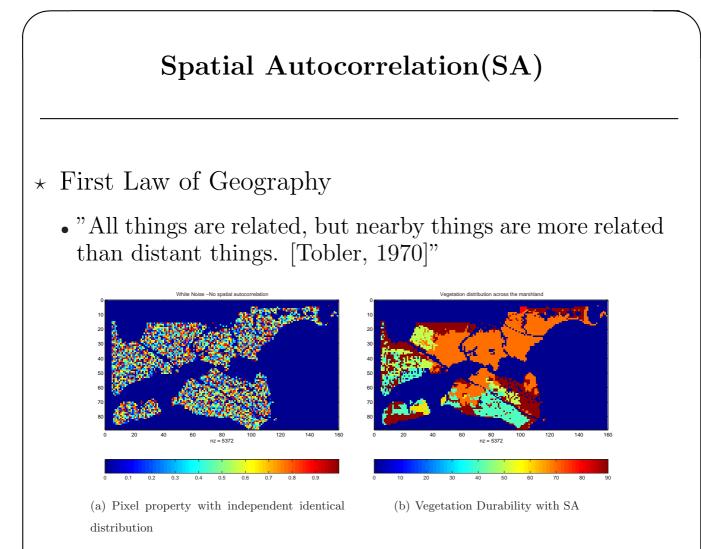


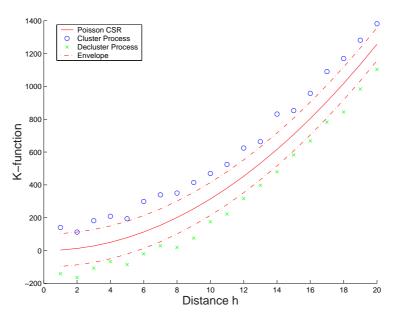
Figure 9: Spatial Randomness vs. Autocorrelation

$\star\,$ Spatial autocorrelation

- Nearby things are more similar than distant things
- Traditional i.i.d. assumption is not valid
- Measures: K-function, Moran's I, Variogram, \cdots

Spatial Autocorrelation: Distance-based Measure

- ***** K-function Definition:
 - Test against randomness for point pattern
 - $K(h) = \lambda^{-1} E$ [number of events within distance h of an arbitrary event]
 - λ is intensity of event
 - \bullet Model departure from randomness in a wide range of scales
- ★ Inference
 - For Poisson complete spatial randomness(csr): $K(h) = \pi h^2$
 - Plot Khat(h) against h, compare to Poisson csr
 - ->: cluster
 - <: decluster/regularity



Spatial Data Mining: Accomplishments and Research Needs

Spatial Autocorrelation: Topological Measure

* Moran's I Measure Definition:

$$MI = \frac{zWz^t}{zz^t}$$

•
$$z = \{x_1 - \bar{x}, \dots, x_n - \bar{x}\}$$

- $-x_i$: data values
- \bar{x} : mean of x
- n: number of data
- W: the contiguity matrix
- \star Ranges between -1 and +1
 - higher positive value \Rightarrow high SA, Cluster, Attract
 - lower negative value \Rightarrow interspersed, de-clustered, repel
 - e.g., spatial randomness \Rightarrow MI = 0
 - \bullet e.g., distribution of vegetation durability \Rightarrow MI = 0.7
 - e.g., checker board \Rightarrow MI = -1

Cross-Correlation

- * Cross K-Function Definition
 - $K_{ij}(h) = \lambda_j^{-1} E$ [number of type *j* event within distance *h* of a randomly chosen type *i* event]
 - Cross K-function of some pair of spatial feature types
 - Example
 - Which pairs are frequently co-located?
 - Statistical significance

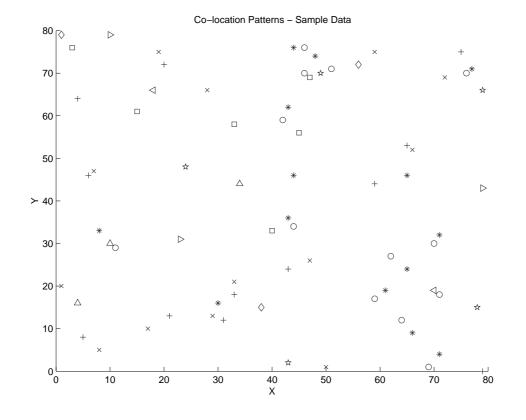


Figure 10: Example Data (o and *; x and +)

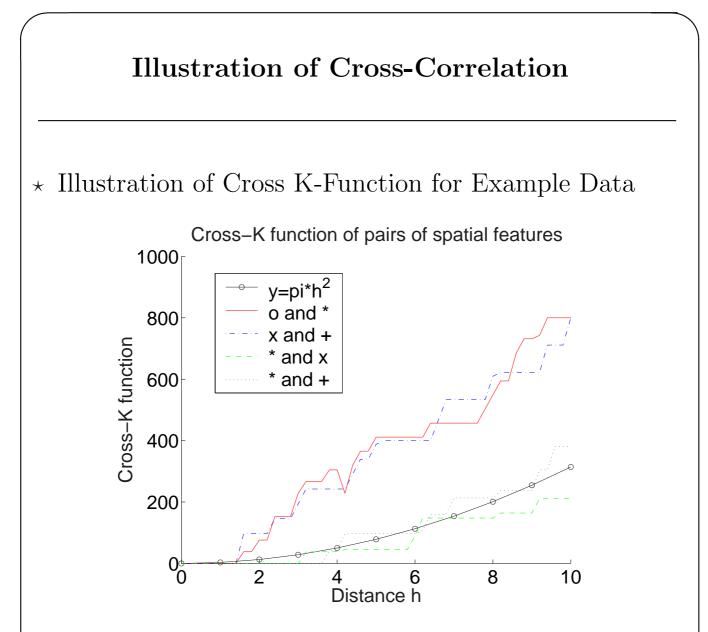
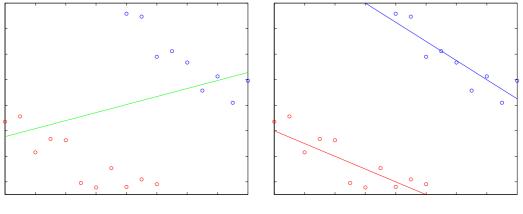
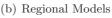


Figure 11: Cross K-function for Example Data

Spatial Slicing

- * Spatial heterogeneity
 - "Second law of geography" [M. Goodchild, UCGIS 2003]
 - Global model might be inconsistent with regional models
 - spatial Simpson's Paradox (or Ecological Inference)



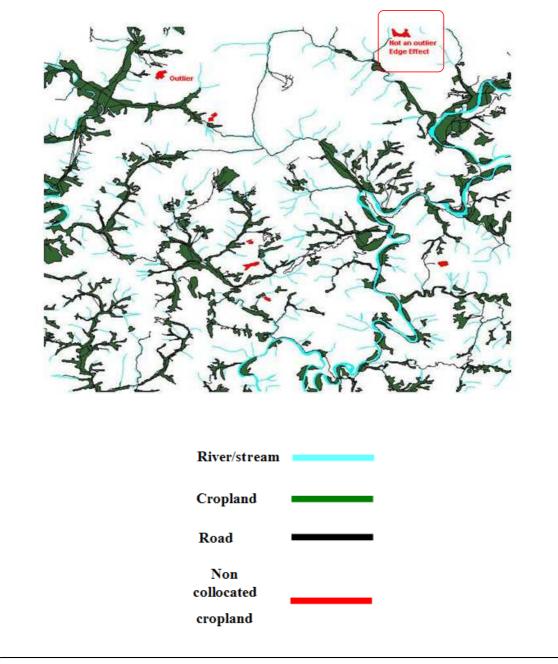


* Spatial Slicing

- Slicing inputs can improve the effectiveness of SDM
- Slicing output can illustrate support regions of a pattern
 - e.g., association rule with support map

Edge Effect

- \star Cropland on edges may not be classified as outliers
- $\star\,$ No concept of spatial edges in classical data mining



Spatial Data Mining: Accomplishments and Research Needs

Research Challenges of Spatial Statistics

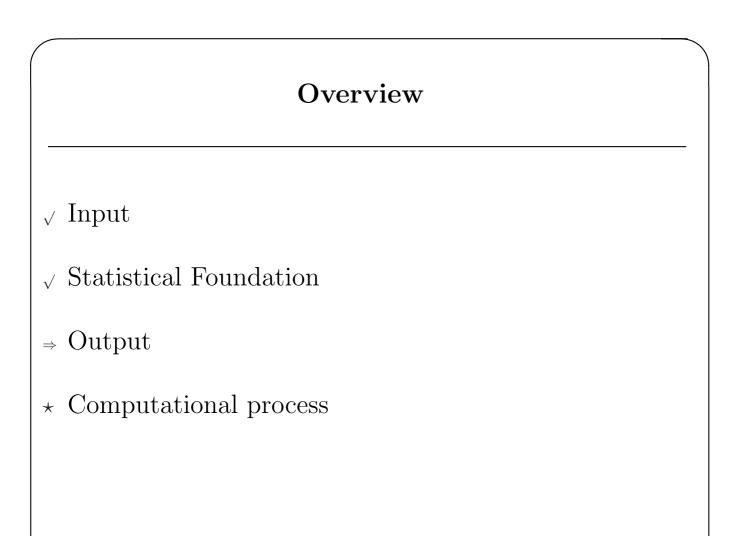
* State-of-the-art of Spatial Statistics

		Point Process	Lattice	Geostatistics
raster				
vector	point	\checkmark		
	line			
	polygon			\checkmark
graph				

Table 5: Data Types and Statistical Models

\star Research Needs

- Correlating extended features:
 - Example data: Korea data
 - e.g. road, river (line strings)
 - e.g. cropland (polygon), road, river
- Edge effect
- Relationship to classical statistics
 - Ex. SVM with spatial basis function vs. SAR



General Approaches in SDM

 $\star\,$ Materializing spatial features, use classical DM

- Ex. Huff's model distance(customer, store)
- Ex. spatial association rule mining[Koperski, Han, 1995]
- Ex: wavelet and fourier transformations
- commercial tools: e.g., SAS-ESRI bridge
- $\star\,$ Spatial slicing, use classical DM
 - Ex. association rule with support map[P. Tan et al]

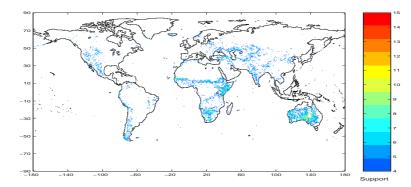


Figure 12: Association rule with support map (FPAR-high \rightarrow NPP-high)

- commercial tools: e.g.,Matlab, SAS, R, Splus
- * Customized spatial techniques
 - Ex. geographically weighted regression: parameter = f(loc)
 - e.g., MRF-based Bayesian Classifier (MRF-BC)
 - commercial tools

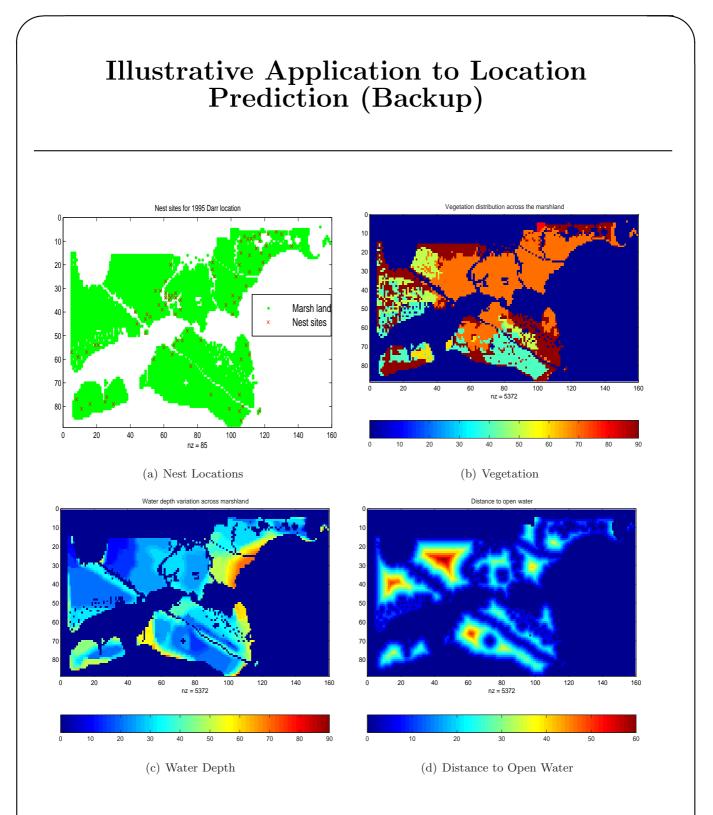
– e.g.,Splus spatial/R spatial/terraseer + customized codes

Overview of Data Mining Output

- * Supervised Learning: Prediction
 - Classification
 - Trend
- \star Unsupervised Learning:
 - Clustering
 - Outlier Detection
 - Association
- \star Input Data Types vs. Output Patterns

Patterns	Point Process	Lattice	Geostatistics
Prediction	\checkmark	\checkmark	
Trend			\checkmark
Clustering	\checkmark	\checkmark	
Outliers	\checkmark	\checkmark	
Associations	\checkmark		

Table 6: Output Patterns vs. Statistical Models



Spatial Data Mining: Accomplishments and Research Needs

Prediction and Trend

\star Prediction

- Continuous: trend, e.g., regression
 - Location aware: spatial autoregressive model(SAR)
- Discrete: classification, e.g., Bayesian classifier
 - Location aware: Markov random fields(MRF)

Classical	Spatial
$\mathbf{y} = \mathbf{X}eta + \epsilon$	$y = \rho W y + X\beta + \epsilon$
$Pr(C_i X) = \frac{Pr(X C_i)Pr(C_i)}{Pr(X)}$	$Pr(c_i X, C_N) = \frac{Pr(c_i)*Pr(X, C_N c_i)}{Pr(X, C_N)}$

 Table 7: Prediction Models

• e.g., ROC curve for SAR and regression

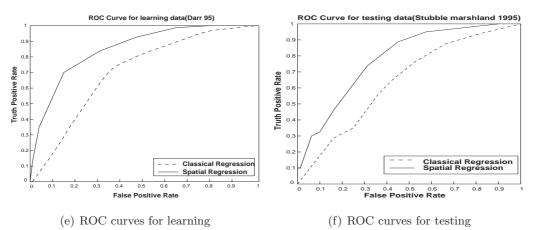


Figure 13: (a) Comparison of the classical regression model with the spatial autoregression model on the Darr learning data. (b) Comparison of the models on the Stubble testing data.

Spatial Contextual Model: SAR

* Spatial Autoregressive Model (SAR)

$$y = \rho W y + X\beta + \epsilon.$$

• Assume that dependent values y'_i are related to each other

$$y_i = f(y_j) \ i \neq j.$$

- \bullet Directly model spatial autocorrelation using W
- * Geographically Weighted Regression (GWR)
 - A method of analyzing spatially varying relationships
 - parameter estimates vary locally
 - Models with Gaussian, logistic or Poisson forms can be fitted
 - Example:

$$y = X\beta' + \epsilon'.$$

• where β' and ϵ' are location dependent

Spatial Contextual Model: MRF

- * Markov Random Fields Gaussian Mixture Model (MRF-GMM)
 - Undirected graph to represent the interdependency relationship of random variables
 - A variable depends only on neighbors
 - Independent of all other variables
 - $f_C(S_i)$ independent of $f_C(S_j)$, if $W(s_i, s_j) = 0$
 - Predict $f_C(s_i)$, given feature value X and neighborhood class label C_N

$$Pr(c_i|X, C_N) = \frac{Pr(c_i) * Pr(X, C_N|c_i)}{Pr(X, C_N)}$$

- Assume: $Pr(c_i), Pr(X, C_N | c_i), and Pr(X, C_N)$ are mixture of Gaussian distributions.

Research Needs for Spatial Classification

- \star Open Problems
 - Estimate W for SAR and MRF-BC
 - Scaling issue in SAR
 - scale difference: $\rho Wy vs. X\beta$
 - Spatial interest measure: e.g., avg dist(actual, predicted)

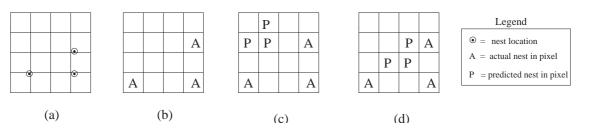
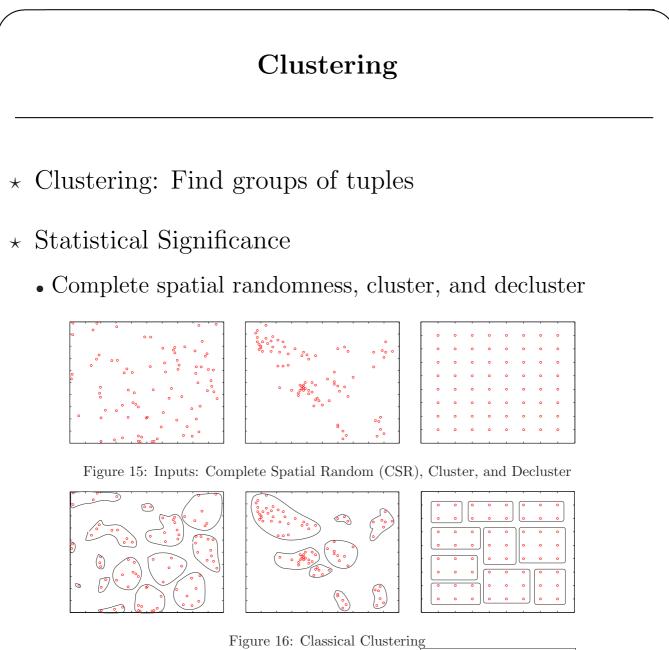
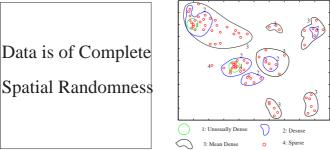


Figure 14: An example showing different predictions: (a)The actual sites, (b)Pixels with actual sites, (c)Prediction 1, (d)Prediction 2. Prediction 2 is spatially more accurate than 1.





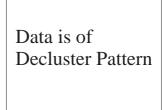


Figure 17: Spatial Clustering

Clustering

- * Similarity Measures
 - Non-spatial: e.g., soundex
 - Classical clustering: Euclidean, metric, graph-based
 - Topological: neighborhood EM(NEM)
 - seeks a partition that is both well clustered in feature space and spatially regular
 - Implicitly based on locations
 - Interest measure:
 - spatial continuity
 - cartographic generalization
 - unusual density
 - keep nearest neighbors in common cluster

* Challenges

- Spatial constraints in algorithmic design
 - Clusters should obey obstacles
 - Ex. rivers, mountain ranges, etc

Semi-Supervised Bayesian Classification

- * Motivation: high cost of collecting labeled samples
- \star Semi-supervised MRF
 - Idea: use unlabeled samples to improve classification
 - Ex. reduce salt-N-pepper noise
 - Effects on land-use data smoothing

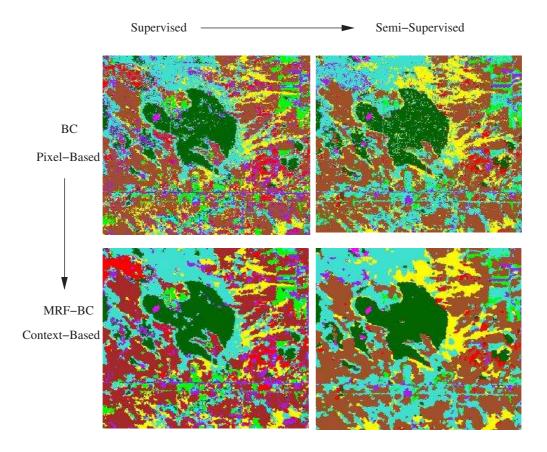
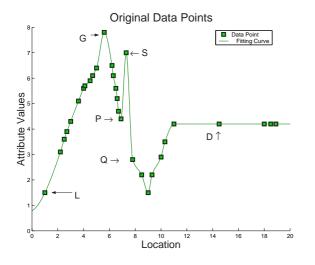


Figure 18: Bayesian Classifier (Top Left); Semi-Supervised BC (Top Right);BC-MRF (Bottom Left); BC-EM-MRF (Bottom Right)

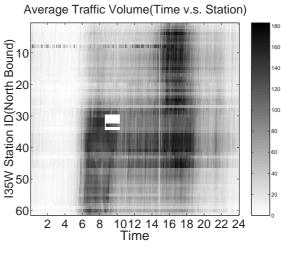
Spatial Outlier Detection

- \star Spatial Outlier Detection
 - Finding anomalous tuples
 - Global vs. Spatial outlier
 - Detection Approaches
 - Graph-based outlier detection: Variogram, Moran Scatter Plot
 - Quantitative outlier detection: Scatter Plot, Z-score

\star Location-awareness



(a) Outliers in Example Data



(b) Outliers in Traffic Data

An Example of Spatial Outlier Detection (Backup)

- \star Consider Scatter Plot
- $\star\,$ Model Building
 - Neighborhood aggregate function $f_{aggr}^N : E(x) = \frac{1}{k} \sum_{y \in N(x)} f(y)$
 - Distributive aggregate functions
 - $-\sum f(x), \sum E(x), \sum f(x)E(x), \sum f^2(x), \sum E^2(x)$
 - Algebraic aggregate functions

$$-m = \frac{N \sum f(x)E(x) - \sum f(x) \sum E(x)}{N \sum f^2(x) - (\sum f(x))^2}$$
$$-b = \frac{\sum f(x) \sum E^2(x) - \sum f(x) \sum f(x)E(x)}{N \sum f^2(x) - (\sum f(x))^2}$$
$$-\sigma_{\epsilon} = \sqrt{\frac{S_{yy} - (m^2 S_{xx})}{(n-2)}},$$
$$- \text{ where } S_{xx} = \sum f^2(x) - \left[\frac{(\sum f(x))^2}{n}\right]$$
$$- \text{ and } S_{yy} = \sum E^2(x) - \left[\frac{(\sum E(x))^2}{n}\right]$$

\star Testing

• Difference function F_{diff}

$$-\epsilon = E(x) - (m * f(x) + b)$$

- where $E(x) = \frac{1}{k} \sum_{y \in N(x)} f(y)$
- Statistic test function *ST*

$$-\left|\frac{\epsilon-\mu_{\epsilon}}{\sigma_{\epsilon}}\right| > \theta$$

Spatial Outlier Detection

- \star Separate two phases
 - Model Building
 - Testing: test a node (or a set of nodes)
- $\star\,$ Computation Structure of Model Building
 - Key insights:
 - Spatial self join using N(x) relationship
 - Algebraic aggregate function can be computed in one disk scan of spatial join
- $\star\,$ Computation Structure of Testing
 - Single node: spatial range query
 - Get_All_Neighbors(x) operation
 - A given set of nodes
 - Sequence of Get_All_Neighbor(x)

Research Needs in Spatial Outlier Detection

- \star Multiple spatial outlier detection
 - Eliminating the influence of neighboring outliers
 - Incremental
- $\star\,$ Multi-attribute spatial outlier detection
 - Use multiple attributes as features
- $\star\,$ Design of spatial statistical tests
- \star Scale up for large data

Association Rules - An Analogy

* Association rule e.g. (Diaper in $T \Rightarrow Beer in T$)

rans.	Items Bought		
	{socks, 🚆 milk, 📋, beef, egg, }		
	{ pillow, 📓 , toothbrush, ice-cream, muffin, }		
	{ 📑 , 📋 , pacifier, formula, blanket, }		
	{battery, juice, beef, egg, chicken, }		

- Support: probability(Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T|Diaper in T)= 2/2
- * Algorithm Apriori [Agrawal, Srikant, VLDB94]
 - Support based pruning using monotonicity
- * Note: Transaction is a core concept!

Spatial Colocation

\star Association

- Domain (f_i) = union { any, domain (f_i) }
- Finding frequent itemsets from f_i
- Co-location
 - Effect of transactionizing: **loss of info**
 - Alternative: use spatial join, statistics

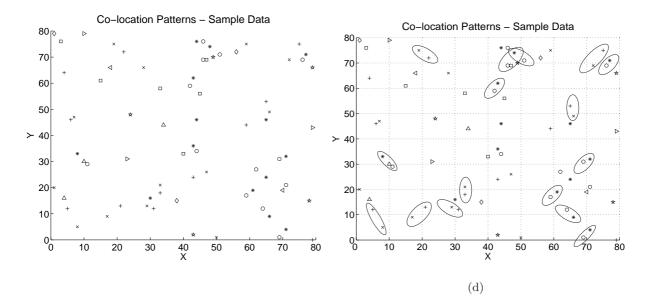


Figure 19: a) A spatial dataset. Shapes represent different spatial feature types. (b) Transactionazing continuous space splits circled instances of colocation patterns into separated transactions

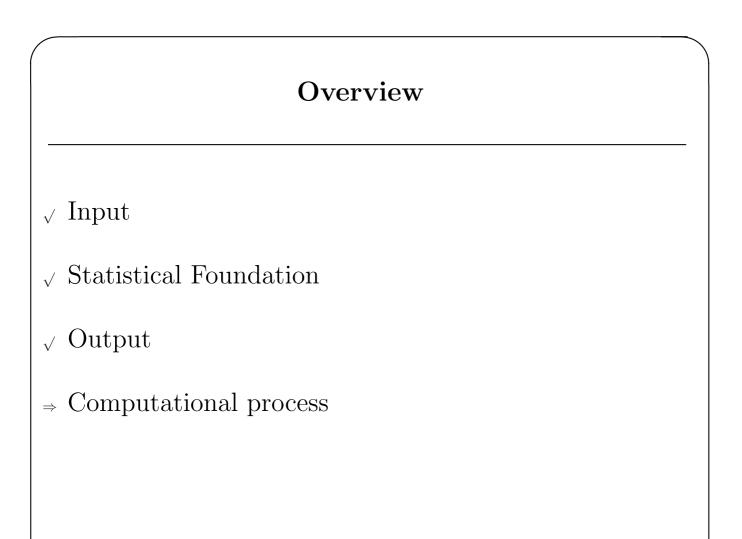
Spatial Colocation Approaches

\star Approaches

- Spatial Join-based Approaches
 - Join based on map overlay, e.g. [Estivill-Castro and Lee, 1001]
 - Join using K-function, e.g. [Shekhar and Huang, 2001]
- Transaction-based Approaches
 - e.g., [Koperski and Han, 1995] and [Morimoto,2001]

\star Challenges

- Neighborhood definition
- "Right" transactionazation
- Statistical interpretation
- Computational complexity
 - large number of joins
 - join predicate is a conjunction of:
 - * neighbor
 - \ast distinct item types



Computational Process

$\star\,$ Most algorithmic strategies are applicable

* Algorithmic Strategies in Spatial Data Mining:

Classical Algorithms	Algorithmic Strategies in SDM	Comments	
Divide-and-Conquer	Space Partitioning	possible	info
		loss	
Filter-and-Refine	Minimum-Bounding-Rectangle(MBR), Predi-		
	cate Approximation		
Ordering	Plane Sweeping, Space Filling Curves	possible	info
		loss	
Hierarchical Structures	Spatial Index, Tree Matching		
Parameter Estimation	Parameter estimation with spatial autocorre-		
	lation		

 Table 8: Algorithmic Strategies in Spatial Data Mining

\star Challenges

• Does spatial domain provide computational efficiency?

- Low dimensionality: 2-3
- Spatial autocorrelation
- Spatial indexing methods
- Generalize to solve spatial problems
 - Linear regression vs SAR
 - * Continuity matrix W is assumed known for SAR, however, estimation of anisotropic W is non-trivial
 - Spatial outlier detection: spatial join
 - Co-location: bunch of joins

Example of Computational Process

\star Teleconnection

- \bullet Find locations with climate correlation over θ
 - e.g., El Nino affects global climate



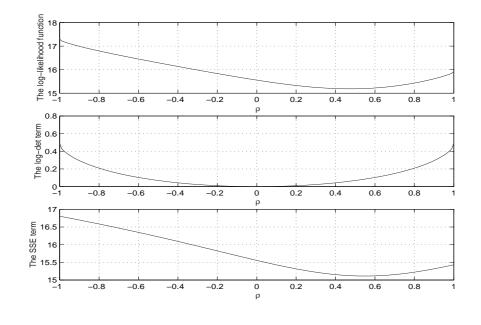
Figure 20: Global Influence of El Nino during the Northern Hemisphere Winter(D: Dry; W:Warm; R:Rainfall)

Example: Teleconnection (Cont')

- ★ Challenge:
 - high $\dim(e.g., 600)$ feature space
 - 67k land locations and 100k ocean locations
 - 50-year monthly data
- \star Computational Efficiency
 - Spatial autocorrelation:
 - Reduce Computational Complexity
 - Spatial indexing to organize locations
 - Top-down tree traversal is a strong filter
 - Spatial join query: filter-and-refine
 - * save 40% to 98% computational cost at $\theta = 0.3$ to 0.9

Parameter estimation for SAR

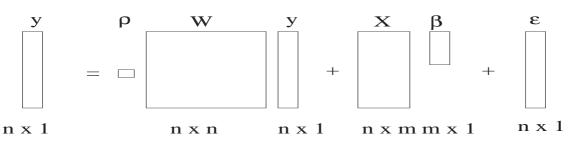
- \star Spatial Auto-Regression Model
 - Estimate ρ and β for $y = \rho W y + X \beta + \epsilon$
 - The estimation uses maximum-likelihood (ML) theory
- \star Log-likelihood function LLF = log-det + SSE + const
 - log-det = $\ln |\mathbf{I} \rho \mathbf{W}|$
 - SSE = $\frac{1}{2\sigma^2} \{ \mathbf{y}^T (\mathbf{I} \rho \mathbf{W})^T \mathbf{M}^T \mathbf{M} (\mathbf{I} \rho \mathbf{W}) \mathbf{y} \}$
- * Computational Insight:
 - *LLF* is uni-modal [Kazar et al., 2005]: breakthrough result
 - Optimal ρ found by Golden Section Search or Binary Search



 $Spatial \ Data \ Mining: \ Accomplishments \ and \ Research \ Needs$

Reducing Computational Cost

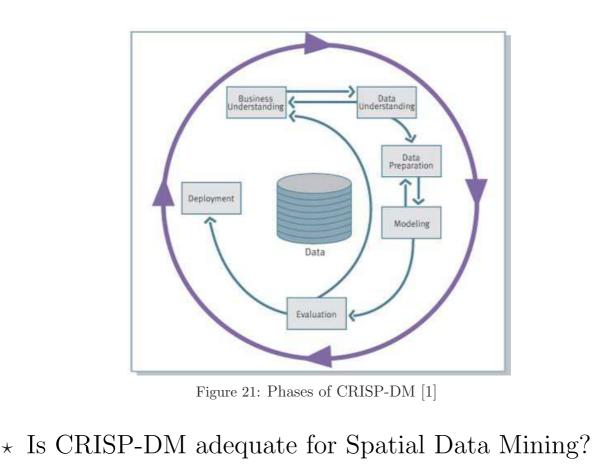
- \star Exact Solution
 - Bottleneck = evaluation of log-det
 - Reduce cost by getting a seed for ρ minimizing SSE term [Kazar et.al., 2005]
- * Approximate Solution
 - Reduce cost by approximating log-determinant term
 - E.g., Chebyshev Polynomials, Taylor Series [LeSage and Pace, 2001]
 - Comparison of Accuracy, e.g., Chebyshev Polynomials \gg Taylor series [Kazar et.al., 2004]
- * Parallel Solution



- \star Computational Challenges
 - Eigenvalue + Least square + M. L.
 - Computing all eigenvalues of a large matrix
 - Memory requirement

Life Cycle of Data Mining

- * CRISP-DM (CRoss-Industry Standard Process for DM)
 - Application/Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
 - [1] CRISP-DM URL: http://www.crisp-dm.org



Spatial Data Mining: Accomplishments and Research Needs

Summary

* What's Special About Spatial Data Mining?

- Input Data
- Statistical Foundation
- Output Patterns
- Computational Process

	Classical DM	Spatial DM
Input	All explicit, simple types	often Implicit relationships, complex types
	and transactions	
Stat Foundation	Independence of samples	spatial autocorrelation
Output	Interest measures: set-based	Location-awareness
Computational Process	Combinatorial optimization	Computational efficiency opportunity
		Spatial autocorrelation, plane-sweeping
	Numerical alg.	New complexity: SAR, co-location mining
		Estimation of anisotropic W is nontrivial
Objective Function	Max likelihood	Map_Similarity(Actual, Predicted)
	Min sum of squared errors	
Constraints	Discrete space	Keep NN together
	Support threshold	Honor geo-boundaries
	Confidence threshold	
Other Issues		Edge effect, scale

Table 9: Summary of Spatial Data Mining

Spatial Data Mining: Accomplishments and Research Needs

Book

http://www.cs.umn.edu/research/shashi-group

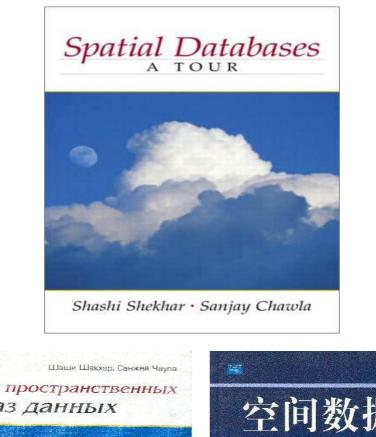


Figure 22: Spatial Databases: A Tour (a) English Version (b) Russian Version (c) Chinese Version

Spatial Data Mining: Accomplishments and Research Needs

References

* References

- [Cressie, 1991], N. Cressie, *Statistics for Spatial Data*, John Wiley and Sons, 1991
- [Degroot, Schervish, 2002], M. Degroot and M. Schervish, *Probability and Statistics (Third Ed.)*, Addison Wesley, 2002
- [Fotheringham et al, 2002], A. Fotheringham, C. Brunsdon, and M. Charlton, *Geographically Weighted Regression : The Analysis of Spatially Varying Relationships*, John Wiley & Sons, 2002.
- [Goodchild, 2001], M. Goodchild, *Spatial Analysis and GIS*, 2001 ESRI User Conference Pre-Conference Seminar
- [Hanning, 2003], R. Hanning, *Spatial Data Analysis : Theory and Practice*, Cambridge University Press, 2003
- [Hastie et al, 2002], T. Hastie, R. Tibshirani, and J. Friedman, *The Elements* of *Statistical Learning*, Springer-Verlag, 2001
- [Huff, 1963], D. Huff, A Probabilistic Analysis of Shopping Center Trade Areas, Lan Economics, 1963
- [Kazar et al., 2004], B. M. Kazar, S. Shekhar, D. J. Lilja, R. R. Vatsavai, R. K. Pace, Comparing Exact and Approximate Spatial Auto-Regression Model Solutions for Spatial Data Analysis, GIScience 2004
- [Kazar et al., 2005], B.M. Kazar, D. Boley, S. Shekhar, D.J. Lilja, R.K. Pace, J. LeSage, *Parameter Estimation for the Spatial Autoregression Model:* A Summary of Results, submitted to KDD 2005

References

\star References

- [Koperski, Han, 1995], K. Kopperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Database, SSTD, 1995
- [Koperski et al, 1996], K. Kopperski, J. Adhikary, and J. Han, *Spatial Data Mining: Progress and Challenges*, DMKD, 1996
- [LeSage and Pace, 2001], J. LeSage and R. K. Pace, *Spatial Dependence in Data Mining*, in Data Mining for Scientific and Engineering Applications, R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. R. Namburu (eds.), Kluwer Academic Publishing, p. 439-460, 2001.
- [Miller, Han, 2001], H. Miller and J. Han(eds), Geographic Data Mining and Knowledge Discovery, Taylor and Francis, 2001
- [Roddick, 2001], J. Roddick, K. Hornsby and M. Spiliopoulou, Yet Another Bibliography of Temporal, Spatial Spatio-temporal Data Mining Research, KDD Workshop, 2001
- [Shekhar et al, 2003], S. Shekhar, C. T. Lu, and P. Zhang, A Unified Approach to Detecting Spatial Outliers, GeoInformatica, 7(2), Kluwer Academic Publishers, 2003
- [Shekhar, Chawla, 2003], S. Shekhar and S. Chawla, *Spatial Databases: A Tour*, Prentice Hall, 2003
- [Shekhar et al, 2002], S. Shekhar, P. Schrater, R. Vatsavai, W. Wu, and S. Chawla, *Spatial Contextual Classification and Prediction Models for Mining Geospatial Data*, IEEE Transactions on Multimedia (special issue on Multimedia Databases), 2002

References

* References

- [Shekhar et al, 2001], S. Shekhar and Y. Huang, Discovering Spatial Colocation Patterns: A Summary of Results, SSTD, 2001
- [Tan et al, 2001], P. Tan and M. Steinbach and V. Kumar and C. Potter and S. Klooster and A. Torregrosa, *Finding Spatio-Temporal Patterns in Earth Science Data, KDD Workshop on Temporal Data Mining, 2001*
- [Tobler, 1970], W. Tobler, A Computer Movie Simulating Urban Growth of Detroit Region, Economic Geography, 46:236-240, 1970
- [Zhang et al, 2003], P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, Exploiting Spatial Autocorrelation to Efficiently Process Correlation-Based Similarity Queries, SSTD, 2003
- [Zhang et al., 2005], P. Zhang, M. Steinbach, V. Kumar, S. Shekhar, P. Tan, S. Klooster, C. Potter, *Discovery of Patterns of Earth Science Data Using Data Mining*, to appear in Next Generation of Data Mining Applications, edited by Mehmed M. Kantardzic and Jozef Zurada, IEEE Press, 2005