
Support Envelopes: A Technique for Exploring the

Structure of Association Patterns

Michael Steinbach
Dept. of Comp. Sci. & Eng.

University of Minnesota

steinbac@cs.umn.edu

Pang-Ning Tan
Dept. of Comp. Sci. & Eng.

Michigan State University

ptan@cse.msu.edu

Vipin Kumar
Dept. of Comp. Sci. & Eng.

University of Minnesota

kumar@cs.umn.edu

August 31, 2004

Abstract

This paper introduces support envelopes—a new tool for analyzing association
patterns—and illustrates some of their properties, applications, and possible exten-
sions. Specifically, the support envelope for a transaction data set and a specified pair
of positive integers (m, n) is the set of items and transactions that need to be searched
to find any association pattern involving m or more transactions and n or more items.
For any transaction data set with M transactions and N items, there is a unique lat-
tice of at most M ∗N support envelopes that captures the structure of the association
patterns in that data set. Because support envelopes are not encumbered by a support
threshold, this support lattice provides a complete view of the association structure
of the data set, including association patterns that have low support. Furthermore,
the boundary of the support lattice—the support boundary—has at most min(M, N)
envelopes and is especially interesting since it bounds the maximum sizes of potential
association patterns—not only for frequent, closed, and maximal itemsets, but also
for patterns, such as error-tolerant itemsets, that are more general. The association
structure can be represented graphically as a two-dimensional scatter plot of the (m, n)
values associated with the support envelopes of the data set, a feature that is useful
in the exploratory analysis of association patterns. Finally, the algorithm to compute
support envelopes is simple and computationally efficient, and it is straightforward to
parallelize the process of finding all the support envelopes.

Keywords: support envelope, association analysis, formal concept analysis, error-tolerant
itemsets

1



1 Introduction

This paper introduces support envelopes, which provide a compact and computationally
efficient approach for capturing the high-level structure of support based association patterns
such as frequent, closed, and error-tolerant itemsets [9, 10, 14, 21, 19]. More specifically, the
support envelope for a transaction data set and a pair of positive integers (m,n) is the set
of items and transactions that need to be searched to find all patterns involving a minimum
of m transactions and n items. Thus, the number of distinct envelopes is at most M ∗ N ,
where M is the number of transactions and N is the number of items. For sparse datasets,
the number of support envelopes is typically much less than M ∗ N .

Like other association patterns, e.g., frequent and closed itemsets, support envelopes
form a lattice. (We will call this lattice the support lattice.) In particular, for any binary
matrix with M rows (transactions) and N columns (items), there is a unique lattice that
captures the structure of the association patterns for that matrix. Standard association
analysis techniques to find frequent, closed, or maximal itemsets break down when the
support threshold becomes too low, and thus, cannot provide information about patterns
with low levels of support. However, because support envelopes are not encumbered by a
support threshold, the support lattice provides a complete view of the association structure
of the data set, including association patterns that have low support.

The boundary (positive border [12]) of the support lattice—the support boundary—is
especially interesting since it bounds the maximum sizes of potential association patterns.
For example, if an envelope on the support boundary is characterized by the pair of integers
(m,n), then there are no non-empty envelopes or association patterns with larger values of
m and n. To illustrate, if the support boundary of a data set contains the support envelope
characterized by (10, 5), then the data set cannot contain a frequent itemset with 5 or more
items that has more than 10 supporting transactions. Furthermore, the support boundary
is not just a bound on frequent, closed, and maximal itemsets, but also on patterns, such
as error-tolerant itemsets (ETIs) [19], that are more general. Another attractive property of
the support boundary is that it contains at most min(M,N) support envelopes.

In addition to providing us with a theoretical foundation for understanding—at least
in part—the high-level structure of association patterns, support envelopes allow the asso-
ciation structure of a binary data to be represented graphically. In particular, the (m,n)
values associated with the envelopes in the data set can be displayed in a two-dimensional
scatter plot, which provides a global view of the structure of association patterns in a data
set. Additional information can be added to this scatter plot by coloring each point with
the density—fraction of ones—of its corresponding support envelope. Support envelopes are
often fairly sparse, i.e., have low density, but in some cases, support envelopes can be rela-
tively dense, and hence, are interesting not just because of the information that they provide
about other association patterns, but also as patterns in their own right. Thus, for some
data sets, e.g., the kosarak data set discussed in Section 4, we can use the scatter plot to
identify dense envelopes that can be investigated to find association patterns of considerable
interest, e.g., low support itemsets with many items.

2



Support envelopes are also interesting from an algorithmic point of view. We present a
simple iterative algorithm that, given only (m, n) and a binary data matrix, finds the support
envelope for all the support-based patterns characterized by (m, n) in time proportional to
(a) nnz, the number of non-zero entries in the data matrix, and (b) the number of iterations,
which is typically small, i.e., less than 10 for data sets in this paper. This algorithm can
compute any individual support envelope without using the preceding elements of the support
lattice. (As discussed later, using the lattice does, however, improve efficiency somewhat,
i.e., the number of iterations is typically reduced to 2 or 3.) The computational complexity of
computing the entire support lattice is O(M ∗N ∗nnz), while the computational complexity
of finding only the support boundary is O(nnz ∗ min(N log(M), M log(N)). Thus, unlike
many association mining tasks, the computational complexity of finding the support lattice
or support boundary is not inherently exponential. Also, because support envelopes can be
computed independently of the lattice, it should be straightforward to parallelize finding all
envelopes or finding the envelopes on the support boundary.

Finally, we consider two simple extensions of support envelopes. First, support envelopes
involving only the items of one specific transaction provide a view of patterns with respect to
a particular transactions, i.e., the set of such ‘restricted’ support envelopes will involve only
those association patterns that are guaranteed to contain the specified transaction. Second,
we consider support envelopes that involve the additional constraint that a certain fraction
of the occurrences of the item must be in the support envelope. Such an approach eliminates
items that are frequent across many patterns.

Overview Section 2 introduces support envelopes and an algorithm for finding them
via an informal example, while Section 3 provides a formal analysis of support envelopes
their properties, and also discusses algorithms for finding an individual support envelope,
the envelopes on the support boundary, or the set of all envelopes for a data set. Examples
of the application of support envelopes to explore real transaction data sets are provided
in Section 4, and extensions of the support envelope are considered in Section 5. Section 6
discusses the relationship of support envelopes to other work, and we conclude, in Section
7, with a summary and indications for future work.

2 Support Envelopes and Support Boundaries: An In-

formal Introduction

This section contains an informal introduction to support envelopes, lattices, and bound-
aries. Consider the following task: Construct an algorithm to identify all the items and
transactions that are involved in frequent itemsets with at least n items, where by frequent
we mean that the itemset must appear in m or more transactions. Instead of trying to find
the interesting frequent patterns, we are asking for something simpler—for the items and
transactions involved in such patterns.

We will use the data set provided in Table 1. Transactions have the numeric labels 1
through 12, while items are labelled with the letters ‘A’ through ‘E.’ This table also shows

3



the sums of each row and column, which represent, respectively, the number of items in each
transaction and the number of transactions containing each item. For example, transaction
1 contains 4 items, while item A occurs in 6 transactions.

2.1 The Support Envelope

We start with a simple idea: Any itemset that has a support requirement of m must contain
items that occur in at least m transactions. Similarly, any itemset that contains n items
must be supported by transactions that have at least n items. Thus, for example, suppose
we are interested in all itemsets that contain at least n = 3 items and have at least m = 3
supporting transactions. From Table 1, we see that we need consider only transactions (rows)
1, 3, 7, 8, 10, and 11, since all other transactions have fewer than 3 items. We are not saying
that these transactions are definitely involved in frequent itemsets with 3 or more items,
only that they might be.

Turning our attention to items, we now evaluate which items are involved in itemsets of
size 3 or more with a support of 3 or more. We might first look at the number of transactions
in which each item appears—see Table 1—but such an approach does not take into account
our previous observation that some transactions should be eliminated. In particular, it is
only the support of items within transactions 1, 3, 7, 8, 10, and 11 that is important, as
these are the only transactions capable of supporting an itemset with 3 or more items. After
computing support within only those transactions, we get the support for the five items to
be, in order, 4, 2, 6, 6, 5—see Table 2. Thus, we can eliminate item B.

Of course, once we have eliminated item B, we have invalidated our previous counts of
how many items occur in each transaction. After taking the elimination of item B into
consideration, the counts for transactions 1, 3, 7, 8, 10, and 11 are, respectively, 4, 3, 4, 4, 4,
and 2—see Table 3. Thus, transaction 11 can be eliminated—see Table 4. Further iterations
yield no change and thus, we obtain the result that all itemsets with 3 or more items and
3 or more supporting transactions occur among some subset of items A, C, D, and E and
some subset of transactions 1, 3, 7, 8, and 10. This set of items and transactions is a support
envelope.

To informally verify the correctness of this result, we computed the frequent itemsets
with a support threshold of 3. These itemsets are shown in Table 5 and are consistent with
the results of our example, i.e., they show that the only itemsets with support of 3 or more
are those involving items A, C, D, and E. It is straightforward to verify—see tables 1 and
4—that the only transactions that contain at least three of these items are 1, 3, 7, 8, and
10.

2.2 The Support Lattice and Boundary

For the data set in Table 1, all the support envelopes can readily be computed by using
the algorithm that we developed above for each value of (m,n), where 1 ≤ m ≤ 12 and
1 ≤ n ≤ 6. (This algorithm, which we call the Support Envelope Algorithm (SEA), is

4



Table 1: Original transaction data set.
A B C D E row sum

1 1 0 1 1 1 4
2 0 1 0 1 0 2
3 0 1 1 1 1 4
4 0 0 1 0 1 2
5 0 1 0 1 0 2
6 0 1 0 1 0 2
7 1 0 1 1 1 4
8 1 0 1 1 1 4
9 1 0 0 1 0 2
10 1 0 1 1 1 4
11 0 1 1 1 0 3
12 1 0 0 0 1 2

col sum 6 5 7 10 7

Table 2: Data after eliminating rows with less than 3 items. Step 1.
A B C D E row sum

1 1 0 1 1 1 4
3 0 1 1 1 1 4
7 1 0 1 1 1 4
8 1 0 1 1 1 4
10 1 0 1 1 1 4
11 0 1 1 1 0 3

col sum 4 2 6 6 5

Table 3: Data after eliminating columns with less than 3 supporting transactions. Step 2.
A C D E row sum

1 1 1 1 1 4
3 0 1 1 1 3
7 1 1 1 1 4
8 1 1 1 1 4
10 1 1 1 1 4
11 0 1 1 0 2

col sum 4 6 6 5

Table 4: Data after eliminating rows with less than 3 items. Step 3.
A C D E row sum

1 1 1 1 1 4
3 0 1 1 1 3
7 1 1 1 1 4
8 1 1 1 1 4
10 1 1 1 1 4

col sum 4 5 5 5
5



Table 5: Frequent itemsets with support 3 or more.
1 item 2 items 3 items 4 items
A B C AC AD AE BD ACD ACE ACDE
D E CD CE DE ADE CDE

formally described in Section 3.3.) Not all values of m and n will yield non-empty support
envelopes, and some (m,n) pairs may yield the same support envelope, i.e., the same set of
transactions and items. Support envelopes can be organized as a lattice [5] by defining one
support envelope to be ‘less than’ (a subset of) a second support envelope if the items and
transactions of the first are a subset of the items and transactions of the second.

In Figure 1, we see a tree-like display of the support lattice. Nodes represent individual
support envelopes and the lines reflect the fact that the lower support envelope is a subset
of the higher support envelope. Inside each box representing a support envelope are the
values of m and n that characterize the envelope, as well as the sets of transactions and
items involved in the envelope. Thus, for the envelope represented by the topmost node
in Figure 1, each of the items in the support envelope occurs in at least 5 transactions and
each transaction in the support envelope contains at least 2 items. Since these conditions are
satisfied by all attributes and objects, this root (or top) envelope contains all the transactions
and items in the data set. While not illustrated by Figure 1, support envelopes can have
multiple parents and/or children.

Since each pair of integers (m, n) is associated with a support envelope (possibly the
empty support envelope), we can represent the entire set of support envelopes as a rectangular
plot of an M by N grid of points (M is the number of transactions and N is the number of
items), where each point is shaded according to its associated support envelope, and where
each support envelope is assigned a different shade of gray. Figure 2 shows the set of support
envelopes using such a representation. Once again, we have used the same shade of gray for
all points i.e., (m, n) pairs, that represent the same support envelope. Thus, the block in the
upper left corner of Figure 2 represents the fact that all support envelopes with m ≤ 5 and
n ≤ 2, are identical, i.e., contain the same transactions and items. To identify the support
envelope associated with with each block in the figure, we find the largest possible values of
m and n of the block, i.e., we use the values of m and n from the the lower right corner of
the block. Thus, for example, the big dark block in the upper left corner is the (5, 2) support
envelope. Also, as we will prove in the next section, a support envelope that is to the right
and/or below a particular support envelope is a subset of any higher (more leftmost) support
envelope, i.e., the transactions and items of the lower (more rightmost) support envelope are
subsets of the transactions and items of the higher (more leftmost) support envelope.

For larger data sets, it is more convenient to view the set of support envelopes as a scatter
plot of the (m,n) values. Such a plot is shown in Figure 3. To provide more information, we
have colored each of the points representing a support envelope by its density, i.e., by the
fraction of ones in the block defined by the transactions and items in the envelope. (This
information can be gathered at almost no cost when finding the support envelopes.) Density

6



  

(5, 2) 
{1-12} 
{A-E} 

 

(6, 1) 
{1-12} 

{A,C,D,E} 
 

(7, 1) 
{1-12} 

{C,D,E} 
 

(10, 1) 
{1-3,5-11} 

{E} 
 

(6, 2) 
{1,3,4,7-12} 
{A, C,D,E} 

 

(2, 3) 
{1,3,7,8,10,11} 
{A,B,C,D,E} 

 

(4, 3) 
{1,3,7,8,10} 
{A,C,D,E} 

 

(5, 3) 
{1,3,7,8,10} 

{C,D,E} 
 

(1, 4) 
{1,3,7,8,10} 
{A,B,C,D,E} 

 

(4, 4) 
{1,7,8,10} 
{A,C,D,E} 

 

Figure 1: Support lattice for sample data.

n   (min items)

m
   

(m
in

 tr
an

sa
ct

io
ns

)

1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2: Support lattice for sample data - rectangular format.

7



1 2 3 4
10

9 

8 

7 

6 

5 

4 

3 

2 

1 

n   (min items)

m
   

(m
in

 tr
an

sa
ct

io
ns

)

Density
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Support lattice for sample data - scatter plot. (Must be viewed in color.)

information is important when a support envelope is relatively dense, e.g., more than 50%
dense. In such cases, the envelope is an interesting pattern in own right, not just because of
the information it provides about other association patterns. We show examples of this for
real transaction data sets later in this paper.

A scatter plot does not explicitly show all the information of the lattice, i.e., which
envelopes are the immediate descendants or parents of other envelopes. However, most of this
information is captured by the position of the points that represent envelopes. Specifically,
an envelope (point) that is below and/or to the right of a second envelope (point) is contained
by that envelope. In our graphical exploration of support envelopes later in the paper, we
will focus on the scatter plot of all the envelopes of a data set.

3 Support Envelopes: A Formal

Introduction

After a quick review of notation and some other preliminaries, we define support envelopes,
analyze the algorithm for finding support envelopes, and prove some properties of support
envelopes.

3.1 Preliminaries

In this section we take care of a few preliminaries.

8



3.1.1 Notation

An overview of the notation used in this paper is provided in Table 6.

Table 6: Summary of Notation
Notation Description
D Data matrix of M rows and N columns
T = {t1, t2, · · · , tM} Set of objects (transactions, rows) of D
I = {i1, i2, · · · , iN} Set of attributes (items, variables, columns) of D
X, Y A set of attributes (items)
R, S A set of objects (transactions)
m Minimum number of transactions for an envelope
n Minimum number of items for an envelope
mm Total number of transactions in an envelope
nn Total number of items in an envelope

3.1.2 Patterns Characterized by (m,n)

Support envelopes capture the structure of all association patterns that can be characterized
with respect to a minimum level of support, i.e., m, and a minimum number of items, i.e.,
n. We make this more formal in the following definition.

Definition 1. Pattern Characterized by (m,n)
A pattern characterized by a pair of positive integers (m, n) is a pattern that involves a set
of attributes X and a set of transactions R such that (a) every attribute of X occurs in at
least m transactions of R and every transaction of R contains at least n items of X, and (b)
m and n are maximal.

Many common types of association patterns fall into this category, e.g., frequent itemsets
and variations such as closed and maximal itemsets [9]. Error-tolerant itemsets (ETIs)
[19], or more properly a slight variation of ETIs, also can also considered to be a pattern
characterized a pair of interger by m, n), as we indicate in the following discussion

3.1.3 Symmetric Error-Tolerant Itemsets

An ETI is a frequent itemset that allows a specified fraction ǫ of the items to be missing from
any one transaction, e.g., if ǫ = 0.2, then 1/5 of the items in a transaction can be missing.
While ETIs are an important approach for extending association patterns, there is a problem
with ETIs as currently defined. For example, consider an ETI with ǫ = 0.2, which consists
of a set of 10 transactions and 5 items. While each transaction must contain at least 4 out
of 5 items, items are not necessarily treated ‘equally,’ e.g., each transaction could be missing
the same item. The originators of ETIs noted this issue, which can be problematic in the

9



degenerate case just mentioned, and avoided this degenerate case in an unspecified manner
in their implementation. However, it seems desirable, even beyond the current discussion,
to modify the notion of an ETI to be more in line with that of frequent itemsets, where all
items play an equal role in the pattern. To this end, we define a symmetric ETI. [19].

Definition 2. Symmetric Error Tolerant Itemset

A symmetric ETI is a frequent itemset that allows a specified fraction ǫ of the items to be
missing from any one transaction and a specified fraction β of transactions to be missing a
particular item.

Any symmetric ETI can be characterized by a pair of integers (m,n). For example,
assume that we have a symmetric ETI has 12 transactions and 4 items, with ǫ = 1/4 and
β = 1/3. Then, m = 8, i.e., each item must appear in 8 transactions in the ETI, and n = 3,
i.e., each transaction must contain at least 3 of the items in the ETI. Thus, symmetric ETI’s
are contained in support envelopes. The importance of this is that the support boundary is
not just a bound on frequent, closed, and maximal itemsets, but also on patterns, such as
symmetric ETIs, that are more general.

On a theoretical note, a support envelope can be considered as a type of symmetric ETI.
Suppose that we have a support envelope characterized by (m,n). If mm is the total number
of transactions in the envelope and nn is the total number of items in the envelope, then
the support envelope is a symmetric ETI with ǫ = n/nn and β = m/mm. However, support
envelopes have properties not shared by all symmetric ETIs.

3.2 Definition of a Support Envelope

We now formally define a support envelope.

Definition 3. Support Envelope

A support envelope Em,n characterized by a pair of positive integers (m, n) is a set of items
X ⊆ I and a set of transactions R ⊆ T which contains all patterns characterized by any
pair of positive integers (m′, n′) such that m′ ≥ m and n′ ≥ n.

Expressed another way, the transactions and items of the support envelope are the union,
respectively, of all the transactions and items of all patterns characterized by any (m′, n′),
such that m′ ≥ m and n′ ≥ n. Also, by construction, there cannot be more than one support
envelope per (m, n) pair. However, as discussed previously and below, the support envelopes
for different pairs of integers (m,n) may be identical, and in that case, we will refer to the
support envelope using the largest values of m and n.

3.3 The Support Envelope Algorithm (SEA)

The algorithm for finding support envelopes—SEA—is shown below. We analyze the com-
plexity, convergence, and correctness of SEA, as well as discussing how SEA can be used

10



Algorithm 1 Support Envelope Algorithm (SEA).

1: {Input: Data matrix D and a pair of positive integers m and n}
2: repeat
3: Eliminate all rows whose sum is less than n.

(Eliminate all transactions with fewer than n items.)
4: Eliminate all columns whose sum is less than m.

(Eliminate all items in fewer than m transactions.)
5: until D does not change
6: return the set of rows (transactions) and columns (items) remaining in D

Table 7: Evaluation Data Sets
Data Set # Transactions # Items Density

chess 3196 75 0.49
mushroom 8124 119 0.19

la1 3204 31472 0.0048
kosarak 990,002 41,270 0.00019

Table 8: Statistics From Computing Support Envelopes
Data Set # Envelopes Time (sec) Avg Iter

chess 353 (37) 3.4 (0.6) 2.1
mushroom 535 (22) 4.7 (0.8) 2.1

la1 26,678 (168) 570.2 (29.6) 3.1
kosarak 110,606 (318) 46,807 (390.8) 3.0

to used as the basis of algorithms for finding envelopes on the support boundary or all the
envelopes of a data set. Initial implementations of these algorithms are available from [17].

Some data sets that will be used to illustrate various aspects of the following algorithms
are listed in Table 7. The first three data sets can be found at the Frequent Itemset Mining
Implementations Repository [7], while the LA1 data set is from the LA data of TREC-5 [1].
Table 8 shows various statistics related to the computation of support envelopes for the given
data sets. (The results in this table were gathered by experiments performed on a 3.2 GHz
Intel Xeonr Linux system.) The first number in the # Envelopes column is the number of
envelopes for a data set, while the number in parentheses is the number of envelopes on the
support boundary. The first number in the Time column is the time (in seconds) required
to compute all the support envelopes for a data set, while the number in parentheses is the
time (in seconds) to compute the support boundary.

Complexity: The time complexity of SEA is proportional to (a) the number of iter-
ations, k, and (b) the amount of time to test each row and column to see if it should be
eliminated. For a sparse matrix representation, the time to sum a row or column and compare
this sum to m or n, is proportional to the number of non-zero entries in the row or column.

11



In turn, the total time required to check which rows and columns should be eliminated is
proportional to, nnz, the number of non-zero entries in the matrix. Thus, the overall time
complexity of SEA is O(M ∗ N ∗ nnz), where k is the number of iterations required.

If a parent of a support envelope is known, then finding a support envelope is somewhat
more efficient because we can use the transactions and items of the parent envelope to provide
a smaller starting matrix. This effect is more important for larger data sets. For example,
with he kosarak data set shown in Table 7, the average number of iterations is reduced from
8 to 3 by using a parent envelope. For the LA1 data set, which is significantly smaller, the
average number of iterations is reduced from 4 to 3. For mushroom and chess, the reduction
is from 3 to 2.

The space required for SEA is O(nnz) plus the amount of space required to store the
support envelopes. While storage of the row and column indices can potentially be large,
there are a couple strategies that can be used to significantly reduce storage requirements.
First, we can store only the indices in which an envelope differs from a parent envelope.
(Preliminary investigations indicate that this approach seems promising.) A second approach
to reducing storage is to not store the row and column indices at all since the entire envelope
can be quickly recomputed if needed.

Convergence: We show that SEA converges to a solution in a fixed number of steps.

Theorem 3.1. SEA converges to a solution in a fixed number of steps whenever the input
is a binary matrix D and positive integers m and n.

Proof. Either SEA eliminates a row or column at each step, eventually producing an empty
matrix, or else SEA terminates after a step in which D is unchanged. Thus, SEA will
converge to a solution in at most min(M,N) steps.

As mentioned, typically, convergence occurs in a much smaller number of steps, i.e., less
than 10 for the data sets in Table 7.

Correctness: Here we show that SEA finds support envelopes.

Theorem 3.2. Given the data matrix D and a pair of positive integers (m, n), the set
of items Y ⊆ I and transactions S ⊆ T returned by SEA are the support envelope of D
characterized by (m,n), i.e., SEA( D, m, n ) = Em,n.

Proof. Consider a pattern that is characterized by m′ ≥ m and n′ ≥ n and that involves the
set of items X ⊆ I and the set of transactions R ⊆ T . By Definition 1, every transaction
in R must contain at least n items of X and every item in Y must occur in at least m
transactions of R. Consequently, none of the transactions of R can be eliminated in Step
3 of SEA since they are ‘supported’ by the items of Y . Also, none of the items of Y can
be eliminated in Step 4 of SEA since they are ‘supported’ by the transactions of R. Thus,
X ⊆ Y and R ⊆ S, i.e., the items and transactions of this pattern are subsets of the set of
items and attributes found by SEA. From this, we conclude that the items and attributes
returned by SEA contain those of Em,n. We still need to show that Em,n contains the items
and transactions returned by SEA. However, the set of transactions and items returned by
SEA is certainly a pattern characterized by (m,n) and must belong to Em,n.

12



An Algorithm for Finding the Boundary A straightforward approach to finding the
support boundary is to perform a binary search over possible values of n for each value of m,
or to perform a binary search over possible values of m for each value of n. Such an approach
results in a conservatively estimated time complexity of O(nnz ∗ min(N log(M), M log(N)).
(Actually, we have observed that it is somewhat better to choose do a binary search over
values of n if there are fewer rows than columns, and vice-versa.) We omit a detailed
description of this algorithm. An implementation of this algorithm can be found at [17] and
statistics are presented in Table 8.

Algorithms for Finding All Support Envelopes A simple approach to finding all
the support envelopes is, for each value of m, to find envelopes for each value of n up to the
limit imposed by the support boundary. (Again, we have observed that it is somewhat better
to perform our algorithm by varying n for a fixed m if there are fewer rows than columns,
and vice-versa.) An implementation of this algorithm can be found at [17], and statistics
from the run of this algorithm are presented in Table 8.

Scalability A basic strategy for parallelizing the previous algorithm is to have each
processor compute all the envelopes for a fixed value of m (or n) and all values of n (or
m). A similar approach could be used to parallelize the algorithm for finding the support
boundary. Issues that would need to considered include load balancing and the generation
of the duplicate support envelopes by different processors.

Another important scalability issue that needs investigation is how to best adapt the
SEA algorithm for cases where the data is large, i.e., the data does not fit in main memory
and it is desirable to access the data in a sequential manner and to make as few passes over
the data as possible. SEA can be implemented to access data in a sequential manner if two
copies of the data are kept, one with the data ordered by rows and the other with the data
ordered by columns.

3.4 Properties of Support Envelopes

We have already encountered a number of the properties of support envelopes in the previous
discussion. For completeness and clarity, we summarize the properties of support envelopes
in this section. Actual proofs of these properties can be found in Appendix A.

For for each pair of integers (m,n), where 1 ≤ m ≤ M and 1 ≤ n ≤ N , there is an
associated support envelope—perhaps the empty support envelope—which is the support
envelope that SEA will return when given (m,n) and the data set D. However, as we saw
in the example, the same support envelope may be associated with more than one pair of
integers since the set of items and transactions that meets the (m,n) constraints may actually
meet stronger constraints. (We characterize a support envelope by the strongest support and
item constraints (i.e., by the maximum (m,n) values) that it satisfies.) A consequence of
these two facts is that the number of support envelopes in a data set is at most M ∗ N .

One support envelope may contain another support envelope, i.e., the items and trans-
actions of one envelope may be subsets of the items and transactions of another envelope.
Said another way, a support envelope defines a block of the data set (matrix) D, and this

13



block may contain the blocks that correspond to other envelopes. Indeed, for a given support
envelope characterized by (m,n), any envelope with a larger value of m, or a larger value of
n, or both, must be a subset of the original envelope. This is not surprising, since increasing
m and n will necessarily eliminate items and transactions.

Like frequent itemsets, support envelopes form a lattice. For support envelopes the order
relationship is the subset relationship described above. Support envelopes which contain no
other (non-empty) envelopes are said to be on the support boundary.

An interesting property that was not mentioned in the example, is that the density of
envelopes, i.e., the fraction of 1’s in the block represented by the envelope, increases as we
move down the lattice. Thus, if one envelope contains another, it must be less dense (or
at least no more dense) than the envelope that it contains. This means that the support
boundary must contain the densest envelopes in the support lattice. This does not mean,
however, that every envelope on the support boundary is denser than any envelope elsewhere
in the support lattice.

There can be at most min(M,N) envelopes on the support boundary. otherwise, two
envelopes on the boundary would have the same value of m or n and one would contain the
other. For a similar reason, the values of m and n are inversely related as we move along
the support boundary, i.e., if we order the support envelopes to have increasing values of m,
then successive envelopes will have decreasing values of n.

4 Exploring Transaction Data Sets with Support En-

velopes

In this section we demonstrate how support envelopes can be used to explore the transaction
data sets of Table 7.

4.1 Dense Data Sets: Mushroom and Chess

We begin by showing the support envelopes for the mushroom and chess data sets in figures
4 and 5, respectively. As before, we have colored the points to show the density of the
support envelopes, i.e., the fraction of 1’s in block of items and attributes defined by the
envelope. Both of these data sets are relatively dense compared to many transaction data
sets and thus, the overall densities of the envelopes are relatively high. For both data sets,
the density of the envelopes are highest for envelopes with many transactions, but few items.
This reflects the fact that both data sets have a few items that occur in most transactions,
and these items appear in a support envelope with a single pattern since no other collection
of items has such a high support. In some cases, these ‘overly frequent’ items should be
discarded since they yield little information.

Also, for both data sets, there are no envelopes near the origin. This reflects the fact
that every item occurs in some minimum number of transactions and that every transaction
contains some minimum number of items. For example, for mushroom, every item occurs

14



0 5 10 15 20 25
9000

8000

7000

6000

5000

4000

3000

2000

1000

0   

n (items)

m
 (

tr
an

sa
ct

io
ns

)

Density
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Support envelopes for mushroom data set. Must be viewed in color.

0 5 10 15 20 25 30 35 40
3500

3000

2500

2000

1500

1000

500 

0   

n (items)

m
 (

tr
an

sa
ct

io
ns

)

Density
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Support envelopes for chess data set. Must be viewed in color.

in at least 4 transactions and every transaction contains exactly 23 items. For chess, every
transaction contains 37 items and and every item occurs in at least 1 transaction. However,
all association patterns characterized by (m,n) values where there are no points in the figures,
can be found in the transactions and items of the envelopes on the inner boundary of the
support lattice. Indeed, recall that the root envelope corresponding to (1, 1) is guaranteed
to encompass all association patterns in the data set. For mushroom, the root envelope is
characterized by the pair (4, 23), while for chess, the root envelope is characterized by (1, 37).

Despite some similarities, the two sets of support envelopes are quite distinct, e.g., the
boundary of the mushroom data set curves inward (towards the origin), while that of the

15



0 200 400 600 800 1000
700

600

500

400

300

200

100

0

 m
 (

m
in

 tr
an

sa
ct

io
ns

)

 n ( min items)
Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Support envelopes for LA1 data set. Must be viewed in color.

0 0.5 1 1.5 2 2.5 3 3.5
6

5

4

3

2

1

0

 lo
g

(m
) 

(m
in

 tr
an

sa
ct

io
ns

)

 log(n) ( min items)
Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Support envelopes for kosarak data set. Note: log scale. Must be viewed in color.

chess data set curves outward. Our observation, which is based on a limited number of
data sets, is that for sparser data, the boundary is concave, while for denser data sets, the
boundary is convex. Of course, the boundary can be also be more complicated, i.e., the
boundary is both concave and convex in different sections.

As another example of how we might use support envelopes to analyze the structure of
support patterns in a data set, we remark that there is an unusually dense support envelope
with 576 transactions and 23 items in the mushroom data set. It has a density of 0.65,

16



tr
an

sa
ct

io
ns

items
5 10 15 20 25 30 35

200

400

600

800

1000

1200

1400

1600

Figure 8: Plot of mushroom support envelope (576,23).

while most of the envelopes around it have a density of roughly 0.3–0.4. Since this support
envelope is somewhat anomalous, we show its plot in Figure 8. The items and transactions
of the envelope have been sorted to put the denser region of the support envelope toward
the upper left hand corner. Each red pixel corresponds to a 1 in the envelope, while each
blue pixel corresponds to a 0. The figure shows that there is a group of 14 items that occur
together in every one of the 1728 transactions in the envelope. (Remember that the total
number of transactions (mm) and items (nn) in an envelope is different from the m (support)
and n (item) constraints.)

Upon further analysis, we discovered that one of the columns was the column 48, ‘gill-
color:buff.’ There are exactly 1728 instances of item 48, every one of which occurs with 13
other items (one of which is ‘poisonous’). This support envelope is somewhat more dense
than the others around it because the co-occurrence of 13 items is larger than is typical for
this data set.

4.2 Sparse Data Sets: LA1 and kosarak

For contrast, we show a graph of the LA1 support envelopes in Figure 6. LA1 is much more
sparse and has more items, although fewer transactions, then either mushroom or chess.
The support envelopes are relatively sparse compared to those of both mushroom and chess.
However, the density does increase from 0.0048 for envelopes near the origin (upper left) to
around 0.2 for envelopes at the boundary. The two red dots in the upper right and lower
left represent, respectively, the longest document and the most frequent item (word). The
support boundary is extremely concave in LA1.

The set of kosarak envelopes is shown in Figure 7. We have used log10 scales for both

17



tr
an

sa
ct

io
ns

items
20 40 60 80 100

50

100

150

200

250

Figure 9: Plot of kosarak support envelope (276,113).

the m and n axes because the m and n values have a much wider range of values. However,
if this were not the case, the support boundary of kosarak would be even more concave than
that of LA1.

Interestingly, some of envelopes on or near the kosarak support boundary, with values of
m between 100 and 1000 (between values of 2 and 3 on the log10 scale) have relatively high
density. We investigated the boundary support envelope (276, 113). Note that it would be
difficult to investigate patterns with such low support using traditional approaches. Indeed,
the results of the FIMI workshop [7], show that current algorithms to find frequent, closed,
or maximal itemsets start to experience a sharp growth in run time at a support threshold
of about 0.1% (990) transactions.) The support value for envelope (276, 113) is even lower
than this, i.e., less than 0.03%. Figure 9 shows a plot of the support envelope corresponding
to (276, 113), which has a density 0.993. This envelope contains a frequent itemset of
approximately 80 items and 250 transactions, and we tried to find this itemset using the
algorithm, fpmax, which is available from the FIMI website [7]. The program ran for more
than a week on a 2.8 GHz Intel Xeonr and produced a file with almost 5 million maximal
itemsets. (We are not sure whether the program terminated normally since memory usage
had grown to 1.2 GB shortly before it terminated.) In contrast, the support boundary for
kosark was computed in approximately 15 minutes on the same machine. (Computing the
boundary on a newer machine took only about 7 minutes.)

18



5 Extensions of the Basic Approach

In this section, we discuss two additional extensions of the basic approach: computing sup-
port envelopes with respect to specific transactions or items and adding additional constraints
to support envelopes.

5.1 Transaction Specific Support Envelopes

When support envelopes are not very dense, they are of interest only for the patterns that can
be extracted from them and for what they tell us about the overall structure of association
patterns. However, if a support envelope is relatively dense, then the envelope is interesting
as a pattern in its own right. Thus, it may be useful to seek special situations where support
envelopes are more likely to be dense. To that end, we consider support envelopes associated
with a particular transaction (or item).

To illustrate this idea we show an example using the LA1 data set. We constructed a data
set specific to the first document (transaction) in LA1 by eliminating all words (items) that
do not appear in this document. (This document comes from the ‘Financial’ class.) We then
computed the support boundary of this document specific data set. Since we are working in
the document domain, we display the results by a table that shows the parameters of the
support envelopes and the words (items) that are part of the support envelopes. (LA1 was
processed using standard information retrieval techniques, e.g., the words are stemmed and
stop words are eliminated.) The first support envelope consists of the selected document
and all its words, while successive envelopes consist of smaller subsets of these words. For
successive envelopes along the boundary, the number of documents increases, while the
number of words (usually) decreases. In other words, the pattern represented by the support
envelope is becoming more general as we move along the support boundary from lower
to higher values of m. The most interesting support envelopes are those in the middle,
since they are not as specific as a particular document, nor so general (frequent) as to be
uninteresting. The envelope with the highest value of m contains the word, ‘home,’ which is
the most frequent word contained by the first document.

These support envelopes have a clear theme of a bank bailout of the home savings and loan
industry. However, the patterns represented by these support envelopes are only moderately
strong, i.e., the support envelopes that contain more than a few documents and items tend
to have densities in the range of 0.5 to 0.7. Nonetheless, recall that the regular support
envelopes for LA1 only have a density that is, at best, around, 0.2.

5.2 Constrained Support Envelopes

A special case of extending support envelopes that is easy to implement and interpret involves
adding a constraint to the support envelope process. For example, very frequent items show
up in many association patterns, but provide little useful information. One way to address
this issue is to require that the fraction of an item involved in an association pattern meet

19



Table 9: Support boundary envelopes LA1 restricted to words (items) in the first document
(transaction).

m n mm nn words

1 26 1 26 bailout bank billion board clos cost countri deal expect feder
goal govern hemorrhag home hoyle industri karl loan overal
quote rest sav spokesman stop texa throughout

2 16 2 16 bailout bank billion board clos cost deal expect feder govern
home industri loan rest sav texa

3 13 3 13 bailout bank billion board cost deal feder govern home indus-
tri loan sav texa

5 11 10 15 bailout bank billion board cost countri deal expect feder gov-
ern home industri loan rest sav

7 10 30 21 bailout bank billion board clos cost countri deal expect feder
goal govern home industri loan rest sav spokesman stop texa
throughout

13 9 38 17 bank billion board clos cost countri deal expect feder govern
home industri loan sav spokesman stop throughout

21 8 46 14 bank billion board clos cost countri deal expect feder govern
home industri loan sav

33 7 80 14 bank billion board clos cost countri deal expect feder govern
home industri loan sav

54 6 150 14 bank billion board clos cost countri deal expect feder govern
home industri loan sav

80 5 197 11 bank billion board cost countri deal expect feder govern home
industri

121 4 348 11 bank billion board cost countri deal expect feder govern home
ndustri

193 3 552 9 board cost countri deal expect feder govern home industri

298 2 532 4 countri expect govern home

676 1 676 1 home

some minimum threshold. (This is formally defined by the notion of a hyperclique pattern
[18].) It is straightforward to add such a constraint to the computation of support envelopes.
In other words, given a specified fraction f between 0 and 1, we eliminate an item if does
not occur in at least m transactions and at least f of its total support occurs among the
transactions of the support envelope. For example, if f = 0.5, then at least half of the
supporting transactions of an items must occur in the support envelope. While a threshold
could also be applied to the rows as well, we do not pursue that approach here.

As an example, we find the support boundary specific to the first document in the LA1
data set using an threshold of 0.5. The results are shown in Table 10. Note that there are
far fewer envelopes, but that they still seem to capture much of the meaning of the previous
envelopes. In particular, the first envelope on the boundary no longer consists of all the

20



Table 10: Support boundary envelopes LA1 restricted to words in the first document and
with the additional constraint that 50% of the occurrences of a word must be in the envelope.

m n mm nn words

140 3 894 16 bank billion board clos cost countri deal expect feder goal
govern home industri rest spokesman stop

287 2 669 5 countri expect feder govern home

676 1 676 1 home

terms from the first document of LA1 that was used to generate the reduced data set.

6 Related Work

To our knowledge, the notion of a support envelope is new, although the concept of an
‘envelope’ is common in mathematics, where an envelope is a mathematical entity—usually
a curve—bounds a collection of other mathematical entities. The related notion of a cover
has been used before in association analysis, but for association rules [4, 13, 15].

The idea of support envelopes was inspired partly by various concepts in lattice theory
[5] and formal concept analysis [6], especially those ideas that have found their way into
association analysis [8, 6, 12]. In particular, a key motivating concept for us is the notion
of efficiently representing frequent itemsets via a lattice of closed itemsets [2, 14, 20]. More
generally, closed itemsets are a specific example of condensed representations [3, 11]. How-
ever, support envelopes are not a condensed representation since it is necessary to keep the
original matrix if the goal is to use support envelopes to actually find itemsets.

The idea of error tolerant itemsets (ETIs) [19] also played an important role in our
thinking. In particular, ETIs emphasize the notion that is useful to consider a version of
frequent itemsets that relaxes the requirement that all items be contained in all transactions.
Support envelopes also embrace this idea, and as we showed in Section 3.1.3, are a special
type of ETI.

Finally, there has been some recent work on computing tight lower bounds for distri-
butions of frequent and maximal frequent itemsets [16]. Although this is a different line of
inquiry than we have pursued in this paper, such work is also quite relevant to understanding
the structure of support based patterns in transaction data.

7 Conclusions and Future Work

In this paper, we introduced support envelopes, a new tool that is useful for exploring the
high-level structure of association patterns in a transaction data set. Important aspects
of support envelopes are that they are not encumbered by a support threshold and that
they provide information not only about frequent, closed, and maximal itemsets, but also
about more general patterns, such as symmetric error-tolerant itemsets. Support envelopes

21



provide both a theoretical basis for understanding this structure and a graphical technique for
visualizing the structure. Furthermore, there are simple and efficient algorithms to compute
a single support envelope, the support envelopes on the support boundary, or all the support
envelopes of a data set.

There is considerable potential for future work. Current implementations for finding the
support boundary support or all support envelopes and could be improved and parallelized to
provide additional performance. Also, the theoretical properties of support envelopes should
be further explored. In particular, the extensions of support envelopes deserve further inves-
tigations since they may be useful both for finding actual patterns, as well as for providing
additional information about the overall structure of association patterns. In particular, we
hope to investigate whether we can extend the notion of support envelopes to continuous
data. Finally, further work is necessary to more fully understand what information can be
extracted from scatter plots of support envelopes.

8 Acknowledgments

This work was partially supported by NASA grant # NCC 2 1231, by DOE/LLNL grant W-
7045-ENG-48, by NSF grant IIS-0308264, and by the Army High Performance Computing
Research Center under the auspices of the Department of the Army, Army Research Lab-
oratory cooperative agreement number DAAD19-01-2-0014. The content of this work does
not necessarily reflect the position or policy of the government and no official endorsement
should be inferred. Access to computing facilities was provided by AHPCRC and Minnesota
Supercomputing Institute.

References

[1] Text retrieval conference.

[2] Jean-Francois Boulicaut and Artur Bykowski. Frequent closures as a concise represen-
tation for binary data mining. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 62–73, 2000.

[3] J.F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation of
boolean data for the approximation of frequency queries. Data Mining and Knowledge
Discovery Journal (DMKD), 7(1):5–22, 2003.

[4] Laurentiu Cristofor and Dan A. Simovici. Generating an informative cover for associa-
tion rules. In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 9-12 December 2002, Maebashi City, Japan, pages 597–600. IEEE Com-
puter Society, 2002.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2nd edition, May 2002.

22



[6] B. Ganter and R. Wille. Formal Concept Analysis – Mathematical Foundations.
Springer, May 1999.

[7] Bart Goethals and Mohammed J. Zaki. Frequent itemset mining implementations repos-
itory. This site contains a wide-variety of algorithms for mining frequent, closed, and
maximal itemsets, http://fimi.cs.helsinki.fi/.

[8] Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and Hannu Toivonen. Data min-
ing, hypergraph transversals, and machine learning (extended abstract). In Proceedings
of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 209–216. ACM Press, 1997.

[9] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, August 2000.

[10] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for associa-
tion rule mining – a general survey and comparison. SIGKDD Explorations, 2(1):58–64,
July 2000.

[11] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and condensed
representations (extended abstract). In Knowledge Discovery and Data Mining, pages
189–194, 1996.

[12] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[13] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Closed set based dis-
covery of small covers for association rules. In Proc. 15emes Journees Bases de Donnees
Avancees, BDA, pages 361–381, 1999.

[14] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

[15] V. Pudi and J. Haritsa. Generalized closed itemsets: A technique for improving the
conciseness of rule covers. In Proc. of 19th IEEE Intl. Conf. on Data Engineering,
Bangalore, India, March 2003, pages 714–716. IEEE Computer Society, 2003.

[16] Ganesh Ramesh, William A. Maniatty, and Mohammed J. Zaki. Feasible itemset dis-
tributions in data mining: theory and application. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
284–295. ACM Press, 2003.

[17] Michael Steinbach. Preliminary implementation of support envelope algorithms.
http://www.cs.umn.edu/ steinbac/se/se.html.

23



[18] H. Xiong, P. Tan, and V. Kumar. Mining strong affinity association patterns in data
sets with skewed support distribution. In Proc. of the 3rd IEEE International Conf. on
Data Mining, pages 387–394, 2003.

[19] Cheng Yang, Usama M. Fayyad, and Paul S. Bradley. Efficient discovery of error-tolerant
frequent itemsets in high dimensions. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 194–203. ACM
Press, 2001.

[20] Mohammed J. Zaki and Ching-Jui Hsiao. Charm: An efficient algorithm for closed
itemset mining. In Second SIAM International Conference on Data Mining, 2002.

[21] Mohammed Javeed Zaki and Mitsunori Ogihara. Theoretical foundations of association
rules. 3rd SIGMOD’98 Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD),Seattle, WA, June 1998.

A Proofs of Support Envelope

Properties

The following theorems establish some properties of support envelopes:
Subset Properties We can define the subset relationship ⊆ between two envelopes, E

and E ′ as follows: E ⊆ E ′ if and only if the transactions of E ⊆ the transactions of E ′ & the
items of E ⊆ the items of E ′. A notion of subset without equality can be similarly defined.
The following theorems establish that envelopes with larger values of m and/or n are subsets
of those with smaller values of m and/or n.

Theorem A.1. For a fixed m, as n increases, the transactions and items of successive
support envelopes are subsets of the transactions and items of the transactions and items of
the preceding support envelopes, i.e., Em,n+1 ⊆ Em,n.

Proof. The ‘block’ consisting of the transactions and items of the support envelope, Em,n+1,
will belong to Em,n since every transaction of Em,n+1 will meet the m threshold from the
support within the items of Em,n+1 and every item of Em,n+1 will meet the n threshold from
the support within the transactions of Em,n+1.

Theorem A.2. For a fixed n, as m increases, the transactions and items of successive
support envelopes are subsets of the transactions and items of the transactions and items of
the preceding support envelopes, Em+1,n ⊆ Em,n.

Proof. Similar to the previous proof.

Theorem A.3. If we have two support envelopes, Em,n and Em+1,n+1, then Em+1,n+1 ⊆ Em,n.

Proof. This follows from the previous two results and the transitivity of the subset operator.

24



T
ra
n
s
a
c
ti
o
n
s

 

Figure 10: How an envelope, Em,n is characterized by which portions are part of envelope
Em,n+1.

Density Properties We define the density of a support envelope as the fraction of the
block of D that consists of 1’s. Not surprisingly, the density of envelopes increases with
increasing values of m and n. Thus, the top or root envelope, which consists of the entire
data matrix, represent the least dense envelope, while the envelopes on the support boundary
are the most dense. However, that does not mean that they will be dense in absolute terms.

Theorem A.4. For a fixed m, as n increases, the density of successive support envelopes
increases, i.e., density(Em,n+1) ≥ density(Em,n).

Proof. Figure 10 shows which portions of an envelope Em,n corresponds to a successive
envelope Em,n+1, assuming that transactions and items are appropriately reordered. The
transactions in Region 3, i.e, that were in Em,n, but which are not in Em,n+1, must have had
exactly m items within the block defined by Em,n. (The value of m is unchanged between
the two envelopes, and thus, the only way that one of these transactions would have been
eliminated from Em,n+1 is if it only has m items.) However, each transaction in Region 1,
i.e., the set of transactions that belong to Em,n+1, contains at least m+1 items, and is thus,
denser than any of the transactions in Region 3. The items in Region 2, i.e., those items
that are in Em,n, but are not in Em,n+1, must contain less than m items in the transactions
of Region 1. Thus, the items in Region 1 are less dense than than the items in Region
2. Hence, Em,n+1, which consists of Region 1 is more dense than regions 2 and 3, and
density(Em,n+1) ≥ density(Em,n).

Theorem A.5. For a fixed n, as m increases, the density of successive support envelopes
increases, i.e., density(Em+1,n) ≥ density(Em,n).

Proof. Similar to the previous proof.

25



Theorem A.6. If we have two support envelopes, Em,n and Em+1,n+1, then density(Em+1,n+1) ≥
density(Em,n).

Proof. This follows from the previous two results and the transitivity of density.

Properties Related to the Support Boundary The support boundary consists of
those envelopes which do not have any children, i.e., do not contain any other envelopes.
As the following theorems show, for envelopes on the support boundary, as m increases, n
decreases, and vice versa. Intuitively, a stronger support constraint reduces the number of
items possible.

Theorem A.7. If, for any m < M , we find the maximum possible n, i.e., n maxm, for
which a non-empty concept can be found, then n maxm+1 ≤ n maxm.

Proof. For m and any n > n maxm, the associated support envelope, Em,n, is empty. By
a previous result, Em+1,n ⊆ Em,n. Thus, if n maxm+1 > n maxm, then Em+1,q is also
empty.

Theorem A.8. If, for any n < N , we find the maximum possible m, i.e., m maxm, for
which a non-empty support envelope can be found, then m maxn+1 ≤ m maxn.

Proof. Similar to the previous proof.

Theorem A.9. m and n are inversely related on the boundary, i.e., as m increases, n
decreases, and vice-versa.

Proof. Suppose not. Then there exist two support envelopes on the boundary characterized
by (m1, n1) and (m2, n2), respectively, such that m2 > m1 and n2 > n1. However, from our
previous results, we know that (a) Em1,n2 is empty and (b) Em2,n2 ⊆ Em1,n2. Thus, Em2,n2

is empty, which is a contradiction as it cannot be a boundary concept. Thus, if m2 > m1,
then n1 < n1.

If mm and nn are, respectively, the number of transactions and items in a support enve-
lope, then mm and nn do are not guaranteed to have a strictly anti-monotonic relationship
for boundary concepts. However, for the data sets that we have examined, mm and nn do
have an anti-monotone relationship, although with a few mild exception.

Theorem A.10. There can be at most min(M,N) envelopes on the pattern boundary.

Proof. We prove this for the situation where there are fewer objects than attributes, i.e.,
N < M . Suppose that there are more than M unique boundary envelopes. Then two of
these envelopes must have the same value of n, since n can take on values only from 1 to
N < M . Let these two envelopes be Em1,n and Em2,n. If m1 = m2, then Em1,n = Em2,n, and
we have violated the assumption that we are only considering unique boundary envelopes.
Without loss of generality, assume that m2 > m1. Then, Em1,n ⊆ Em2,n and this contradicts
the assumption that Em1,n is a boundary envelope. The proof of the case of fewer objects
than attributes is similar.

26



Lattice Properties As Theorem A.11 indicates, support envelopes form a lattice [5].
Furthermore, we say that an envelope E ′ is a child of another envelope E if E ′ ⊂ E and
there is no other envelope E ′′ such that E ′′ ⊂ E and E ′ ⊂ E ′′. (In lattice theory terminology,
E ′ is covered by E.) In this case, we also say that E is a parent of e2. In the data sets
that we have used, we typically see that an envelope has zero, one or two children. However,
envelopes can have more children. For example, the mushroom data set described in Table 7,
has 14 envelopes out of 535 with more than 2 children, including 2 with 9 children. Likewise,
an envelope can have more than two parents. For example, in the mushroom data set, one
envelope has 12 parents.

Theorem A.11. The set of all support envelopes Em,n is a lattice with the envelope, E1,1,
which contains all attributes and objects, as the top (maximum) element and the empty
support envelope, which has no transactions or items as the bottom element of the lattice.

Proof. (Sketch) A lattice [5] is a set together with an order relation and a meet and join oper-
ator. The ⊆ relation that we have already defined is an order relation for support envelopes,
since it inherits the reflexive, anti-symmetric, and transitive properties of the original subset
relation. In the ordinary lattice of sets the join and meet operators are union and inter-
section, respectively. If we define these operations on support envelopes by defining them
in a pairwise manner, e.g., the intersection of two support envelopes is just the intersection
of their respective sets of transactions and items. It is then straightforward to show that
the meet and join operations of support envelopes are these pairwise intersection and join
operations, respectively. The top element of lattice is the support envelope corresponding
to the (1, 1), i.e., the entire data set D. The bottom element of the data set is the empty
envelope.

Sets of Equivalent (m,n) Pairs A single support envelope may correspond to a number
of (m,n) pairs, which, to use algebraic terminology, constitute an equivalence class. From
Figure 2, we might assume that such equivalence classes of (m,n) pairs are either a single
point or a rectangle. While this is often true, it is not true in general. More specifically, as
the following theorems indicate, the shape of the equivalent (m,n) pairs can be a staircase
shape as indicated in Figure 11.

Theorem A.12. If we have two support envelopes, Em,n1 and Em,n2, with n1 < n2 and
Em,n1 = Em,n2, then Em,n1 = Em,n2 = Em,n, ∀n, n1 ≤ n ≤ n2.

Proof. Em,n ⊆ Em,n1 and Em,n2 ⊆ Em,n by Theorem A.2. Since Em,n1 ⊆ Em,n2, the transi-
tivity of the subset operator implies that Em,n1 = Em,n.

For a horizontal ‘line’ of (m,n) values, if both endpoints are associated with a particular
support envelope, then all the points in between must also be associated with the same
envelope.

Theorem A.13. If we have two support envelopes, Em1,n and Em2,n, with m1 < m2 and
Em1,n = Em2,n, then Em1,n = Em2,n = Em,n, ∀m, m1 ≤ m ≤ m2.

27



�
Figure 11: Most general shape of (m,n) pairs corresponding to a single support envelope.

Proof. Similar to A.12.

For a vertical ‘line’ of (m,n) values, if both endpoints are associated with a particular
support envelope, then all the points in between must also be associated with the same
envelope.

Theorem A.14. If we have two support envelopes, Em1,n1 and Em2,n2, with m1 < m2,
n1 <n2, and Em1,n1 = Em2,n2, then Em1,n1 = Em2,n2 = Em,n, ∀m, m1 ≤ m ≤ m2, ∀n,
n1 ≤ n ≤ n2.

Proof. Em1,n1 ⊆ Em1,n2 and Em2,n2 ⊆ Em1,n2 by theorems A.1 and A.2. Since Em1,n1 ⊆
Em2,n2, the transitivity of the subset operator implies that Em1,n1 = Em1,n2. In a similar
manner we can show that Em1,n1 = Em2,n1. We then have support envelopes at four points
of a square, and the application of theorems A.1 and A.2 completes the proof.

For a diagonal ‘line’ of (m,n) values, if both endpoints are associated with a particular
support envelope, then not only are all the points on the line associated with the same
envelope, but all points in the block defined by the two points are also be associated with
the same envelope.

Theorem A.15. If we have two support envelopes, Em2,n1 and Em1,n2, with m1 < m2,
n1 <n2, and Em2,n1 = Em1,n2, then Em2,n1 = Em1,n2 = Em2,n, ∀n, n1 ≤ n ≤ n2, and
Em2,n1 = Em1,n2 = Em1,n2, ∀m, m1 ≤ m ≤ m2.

Proof. Because Em2,n1andEm1,n2 are equal, each transaction in both envelopes has n2 items
and each item occurs in m2 transactions. Thus, this support envelope is the support envelope
Em2,n2. Application of theorems A.1 and A.2 completes the proof.

Two anti-diagonal (m,n) points are a more complicated situation. Basically, if we draw
a horizontal line from the leftmost/bottomost point and a vertical line from the right-
most/topmost point, the point of intersection between those two lines and all points in

28



between must be associated with the same envelope as the two points. This fact is what
causes the potential staircase shape of a support envelope.

29


