Colloquium: Quantum Supremacy: Checking a Quantum Computer With a Classical Supercomputer

Cray Distinguished Speaker Series
October 15, 2018 - 11:15am to 12:15pm
Affiliation: 
UC Santa Barbara
Location: 
3-180 Keller Hall
Host: 
Joe Konstan

All are welcome to attend a coffee reception with John Martinis

from 10:30AM -11:15AM in 3-176 Keller Hall

hosted by the CS&E Department. 

Abstract:  As microelectronics technology nears the end of exponential growth over time, known as Moore’s law, there is a renewed interest in new computing paradigms such as quantum computing.   A key step in the roadmap to build a scientifically or commercially useful quantum computer will be to demonstrate its exponentially growing computing power. I will explain how a 7 by 7 array of superconducting xmon qubits with nearest-neighbor coupling, and with programmable single- and two-qubit gate with errors of about 0.2%, can execute a modest depth quantum computation that fully entangles the 49 qubits.  Sampling of the resulting output can be checked against a classical simulation to demonstrate proper operation of the quantum computer and compare its system error rate with predictions. With a computation space of 2^49 = 5 x 10^14 states, the quantum computation can only be checked using the biggest supercomputers. I will show experimental data towards this demonstration from a 9 qubit adjustable-coupler “gmon” device, which implements the basic sampling algorithm of quantum supremacy for a computational (Hilbert) space of about 500.  We have begun testing of the quantum supremacy chip.

Bio: John Martinis pioneered research on superconducting quantum-bits as a graduate student at U.C. Berkeley.  He has worked at CEA France, NIST Boulder, and UC Santa Barbara. In 2014 he was awarded the London Prize for low-temperature physics research on superconducting qubits.  In 2014 he joined the Google quantum-AI team, and now heads an effort to build a useful quantum computer.

Schedule