An Efficient Client Collaboration Framework for Large-Scale Streaming

Date of Submission: 
August 8, 2005
Report Number: 
Report PDF: 
In this paper, we propose a loopback approach in a two-level streaming architecture to exploit collaborative client/proxy buffers for improving the quality and efficiency of large-scale streaming applications. At the upper level we use a Content Delivery Network (CDN) to deliver video from a central server to proxy servers. At the lower level a proxy server delivers video with the help of collaborative client caches. In particular, a proxy server and its clients in a local domain cache different portions of a video and form delivery loops. In each loop, a single video stream originates at the proxy, passes through a number of clients, and finally is passed back to the proxy. As a result, with limited bandwidth and storage space contributed by collaborative clients, we are able to significantly reduce the required network bandwidth, I/O bandwidth, and cache space of a proxy. Furthermore, we develop a local repair scheme to address the client failure issue for enhancing service quality and eliminating most required repairing load at the central server. For popular videos, our local repair scheme is able to handle most of single-client failures without service disruption and retransmissions from the central server. Our analysis and simulations have shown the effectiveness of the proposed Loopback Scheme.