Contextual Time Series Change Detection

Date of Submission: 
July 23, 2012
Report Number: 
Report PDF: 
Time series are commonly used in a variety of fields, ranging from economics to manufacturing. As a result, time series analysis and modeling has become an active research area in statistics and data mining. In this paper, we focus on a type of change we call contextual time series change (CTC) and propose a novel two-stage algorithm to address it. In contrast to traditional change detection methods, which consider each time series separately, CTC is defined as a change relative to the behavior of a group of related time series. As a result, our proposed method is able to identify novel types of changes not found by other algorithms. We demonstrate the unique capabilities of our approach with several case studies on real-world datasets from the financial and Earth science domains.