Tensor-Matrix Products with a Compressed Sparse Tensor

Date of Submission: 
October 12, 2015
Report Number: 
Report PDF: 

The Canonical Polyadic Decomposition (CPD) of tensors is a powerful tool for analyzing multi-way data and is used extensively to analyze very large and extremely sparse datasets. The bottleneck of computing the CPD is multiplying a sparse tensor by several dense matrices. Algorithms for tensor-matrix products fall into two classes. The first class saves floating point operations by storing a compressed tensor for each dimension of the data. These methods are fast but suffer high memory costs. The second class uses a single uncompressed tensor at the cost of additional floating point operations. In this work, we bridge the gap between the two approaches and introduce the compressed sparse fiber (CSF) a data structure for sparse tensors along with a novel parallel algorithm for tensor-matrix multiplication. CSF offers similar operation reductions as existing compressed methods while using only a single tensor structure. We validate our contributions with experiments comparing against state-of-the-art methods on a diverse set of datasets. Our work uses 58% less memory than the state-of-the-art while achieving 81% of the parallel performance on 16 threads.