
A regression model for predicting optimal purchase timing for airline tickets

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 11-025

A regression model for predicting optimal purchase timing for airline

tickets

William Groves and Maria Gini

October 18, 2011





A regression model for predicting optimal purchase timing for

airline tickets

William Groves and Maria Gini

Department of Computer Science and Engineering, University of Minnesota

{groves, gini}@cs.umn.edu

Abstract

Optimal timing for airline ticket purchasing from the consumer’s perspective is challenging principally

because buyers have insufficient information for reasoning about future price movements. This paper

presents a model for computing expected future prices and reasoning about the risk of price changes.

The proposed model is used to predict the future expected minimum price of all available flights on specific

routes and dates based on a corpus of historical price quotes. Also, we apply our model to predict prices

of flights with specific desirable properties such as flights from a specific airline, non-stop only flights, or

multi-segment flights. By comparing models with different target properties, buyers can determine the

likely cost of their preferences. We present the expected costs of various preferences for two high-volume

routes. Performance of the prediction models presented is achieved by including instances of time-delayed

features, by imposing a class hierarchy among the raw features based on feature similarity, and by pruning

the classes of features used in prediction based on in-situ performance. Our results show that purchase

policy guidance using these models can lower the average cost of purchases in the 2 month period prior

to a desired departure. The proposed method compares favorably with a deployed commercial web site

providing similar purchase policy recommendations.

1 Introduction

Adversarial risk in the airline ticket domain exists in two contexts: the adversarial relationship between buyers
and sellers, and the competitive relationships that exist between multiple airlines providing the equivalent
service. Buyers are often seeking the lowest price on their travel, while sellers are seeking to keep overall
revenue as high as possible to maximize profit. Simultaneously, each seller must consider the price movements
of its competitors to ensure that its prices remain sufficiently competitive to achieve sufficient (but not too
high) demand. It is impossible to effectively address the problem of optimizing decision making from the
buyer’s point of view without also considering both types of adversarial relationships.

Sellers (airlines) make significant long term investments in fixed infrastructure (airports, repair facilities),
hardware (planes), and route contracts. The specific details of these long term decisions are intended to
roughly match expected demand but often do not match exactly. Dynamic setting of prices is the mechanism
that airlines use to increase the matching between their individual supply and demand profile in order to
attain the greatest revenue.

A central challenge in the airline ticket purchasing domain is the information asymmetry that exists
between buyers and sellers. Airlines have the ability to mine significant databases of historical sales data to
develop models for expected future demand for each flight. Demand for a specific flight is likely to vary over
time and will also vary based on the pricing strategy adopted by the airline. For buyers, it is generally best
to buy far in advance of a flight’s departure because the prices tend to increase dramatically as the departure
date approaches. But, airlines often violate this principle and adjust prices downward to increase sales.

We make two novel contributions in this work: (1) a method of automated optimal feature set generation
from the data that leverages a hierarchicalization of the available features to efficiently compute a feature set
is proposed; (2) the addition of time-delayed observations to the feature vector fed to the machine learning
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algorithm is performed. This allows anticipation of trends and more complex relationships between variables.
For instance, we address pricing behaviors up to and beyond 60 days prior to departure, and we consider
purchasing a flight on any airline for a specific date and city pair (previous work only considers the cost of
a specific pair of flight numbers from two specific airlines).

These ideas are then experimentally applied to prediction in the real-world airline ticket purchase domain.
This paper presents models that also accommodate preferences of passengers about the number of stops in
the itinerary or the specific airline to use. We believe this prediction task is both a more difficult task and
generates models that are more useful for actual airline passengers.
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Figure 1: Mean lowest price offered by all airlines for MSP to NYC 5-day round trip flights having (a)
Thursday departure and Tuesday return, or (b) Monday departure and Friday return itineraries. Each solid
line series indicates quotes for a different departure. There are 8 unique departure dates included in each
graph. The dotted series indicates the aggregate value from all 8 departures.

2 Data Sources

The primary data for our analysis was collected using daily price quotes from a major travel search web
site over the period February 22, 2011 to June 23, 2011. A web spider was written to query for each unique
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route and departure date pair in our study, so the results should be representative of what an individual user
could observe in the market. Each query returned approximately 1,200 unique round-trip itineraries from
all airlines; most queries returned results from 10 or more airlines. All itineraries were stored in a database,
and feature values (discussed in Section 4) were computed as aggregates from the set of returned itineraries
on each day. For consistency, these web queries were run sequentially and at the same time for every day in
the study.1

Bing Travel, a popular travel search web site, has a “Fare Predictor” tool that provides a daily buy/wait
policy recommendation for many route and departure dates. Bing Travel recommendation data was obtained
from the Bing Travel search site for request date range March 15, 2011 to June 23, 2011. The site provides
additional output of their model in the form of a distribution over future changes in the minimum price for
each route and departure date over the next 7 days. We have collected these data in addition to our query
data to facilitate comparisons between our model’s buy/wait policy and the policy computed by the Bing
Travel site. It is our understanding that the Bing Travel “Fare Predictor” is an extension of work by Etzioni
et. al. in [5]. Examples of queries and statistics are shown in Table 1.

Example 1 Example 2

Quote Date: 13 May 2011 13 May 2011
Origin City: MSP NYC
Destination City: NYC LAX
Departure Date: 20 May 2011 20 May 2011
Return Date: 25 May 2011 25 May 2011

No. of itineraries
returned:

1135 1304

No. of airlines
quoting:

9 13

No. of airlines
exceeding 40%
threshold:

8 10

Table 1: Airline price quote specification for the set of itineraries available for all airlines for specific 5-day
round trips. The exact dates and cities shown are for illustration purposes only. The itinerary counts returned
for these queries are also shown.

2.1 Pricing Patterns in Historical Data

Historical price quotes visible from a buyer’s perspective can be used to develop predictive models of the
sellers’ pricing. There are strong cyclic patterns in the time series of prices. For example, Figure 1 shows the
average lowest price quoted by all airlines for a specific origin-destination pair for 2 months of itineraries
departing on (a) Thursdays and (b) Mondays. The Thursday to Tuesday time series shows a regular decrease
in prices for Tuesday, Wednesday, and Thursday purchases,2 while the (b) series shows significant increases
for Thursday, Friday, and Saturday purchases. As expected, both series exhibit price increases in the last
few days before departure (days to departure ≤ 7) but the (b) series exhibits this increase earlier in the
time series. We posit that the majority of business flights would be Monday to Friday itineraries, and thus
the demand for (b) series flights would be more insensitive to price than leisure flights. On business flights,
airlines are able to increase prices sooner without causing a significant reduction in demand.

The pricing behaviors exhibited for other origin-destination pairs also differ from the example in Figure 1.
A high traffic origin-destination pair such as the New York City to Los Angeles route exhibits much weaker

1All data sets used in our experiments are available, upon request, from the authors.
2days-to-departure modulo 7 ∈ {0, 1, 2}
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cyclic patterns. This example is shown in Figure 2. We conjecture that strategic pricing is likely to have a
much greater observed effect for routes that have relatively few (2-3) competing airlines.
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Figure 2: Mean lowest price offered by all airlines for NYC to LAX 5-day round trip flights having (a)
Thursday departure and Tuesday return, or (b) Monday departure and Friday return itineraries.

3 Background and Related Work

Airlines determine the prices to offer for each flight through a process called yield management which is
designed to maximize revenue given constraints such as capacity and estimates of future demand. For an
overview of this process and the techniques used, see [2, 12]. Airlines divide seats in each flight into fare classes
and charge different prices for each class in order to maximize overall revenue on their entire flight network.
Airlines must balance the rate at which seats fill on their flights and this is generally done by changing the
price. There are generally mismatches between airplane size and passenger demand are equalized through
pricing, which has the effect of adjusting demand. Choosing optimal pricing on an entire airline network
becomes increasingly complex because there are instances (in hub-and-spoke networks) when sacrificing
revenue on a particular flight can increase overall revenue of the entire network.

The current state of yield management and competition in the airline industry is a direct result of
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historical decisions made about regulation in the industry [12]. The authors of [12] provide a case study
describing the evolution of yield management at American Airlines. The techniques evolved beginning with
a simple overbooking of flights. during the period of airline regulation (ending in 1979). Due to regulatory
changes, airlines became free to adjust the airfare for each seat without restriction. This allowed airlines to
divide the seats for each flight into different “fare classes” and charge different prices for effectively the same
service. The development of fare classes was critical in maximizing passenger throughput in hub-and-spoke
air networks because a passenger taking a single non-stop flight will accrue a different amount of revenue
than a passenger taking a longer multi-stop flight. To maximize revenue, an airline needs to be able to offer
competitive fares to both types of passengers and yield management is a way to amortize these differences
within the company.

In traditional yield management, the lowest air ticket prices quoted to customers are based on the available
seats in each fare class for a particular flight (or origin-destination pair in the case of multi-stop itineraries).
An airline can adjust the rate-of-fill for a particular flight by moving seats between fare classes (i.e. by moving
high cost seats into lower cost fare classes). These decisions are traditionally made by humans who take into
account previous demand, current sales, and competitive market conditions.

Yield management can be applied to other industries with properties such as the need to handle advance
reservations, a range of customer values for the same product, the ability for customers to cancel, a non-
negligible probability of no-shows, or stock perishable inventory [4]. Industries with these properties include
hotel booking, railroad transport (linear networks, many origin-destination pairs along a shared linear route),
car rental, electric utility, and broadcasting industries. Dynamic pricing can also be beneficial in industries
that can store inventory but these techniques have traditionally not been applied because of the high cost
of changing prices. The key features enabling dynamic pricing are availability of demand data, ability to
inexpensively change prices, and availability of decision support tools.

Additional market studies have addressed how the airline market has changed with the introduction
of low cost airlines (LCAs). An overview of the competitive considerations in pricing strategies developed
by LCAs in the European air travel market is in [11]. A general econometric model (using ordinary least
squares regression) is developed to assess the most significant factors determining ticket prices from LCAs.
The authors find that tickets purchased between 30 and 8 days prior to departure are more expensive than
tickets bought in other periods. Tickets bought in the few days prior to departure can be significantly
cheaper but are not always available due to demand. It should be noted that the LCAs do not compete
against conventional airlines on price alone. They also use horizontal product differentiation to minimize
the necessity to compete on price both with other LCAs and with conventional airlines. Specifically, LCAs
attempt to locate themselves at secondary airports (not significantly served by conventional airlines) and fly
on schedules that are maximally distant from existing players. This suggests that preferences about schedule
convenience and location also play a significant role in customers’ purchasing decisions and ought to be
considered in any predictive model in this domain.

In a later investigation [1] on measurements of market power of LCAs in the European airline market,
airlines that have a significant share of the traffic at an individual airport tend to have higher prices than
other carriers at the same airport. Also, an airline having a large portion of traffic between two pairs of
airports (one direct route) tends to have greater market power than an airline having a large portion of
traffic between two airports without a direct route. There is greater substitutability on routes with one or
more stops, so market power is lower.

Some work has been done on determining optimal purchase timing for airline tickets. Our work has
been inspired by [5], where several purchasing agents attempt to predict the optimal purchase time of an
airline ticket for a particular flight. The models are able to determine the optimal purchase time within the
last 21 days prior to departure for specific flights in their collected data set. For benchmarking the results,
the authors compute the purchasing policy (a sequence of wait/buy signals) for many unique simulated
passengers with a specific target airline, target flight, and date of departure to satisfy. The optimal policy
(the sequence of buy/wait signals that leads to the lowest possible ticket price) is used as a benchmark for
each simulated passenger and the cost of each alternative purchasing agent is computed. The aggregate result
shows that, given these purchasing criteria, it is possible to save a significant amount when purchasing. This

5



paper is different from the previous work in that we model the aggregate cost of all flights meeting some
preference criteria.

There are several efforts in the game theory community to model aspects of the airline ticket domain,
usually for the purpose of understanding competitive market dynamics of the oligopoly of sellers. In [13],
a dynamic programming model is presented for determining optimal fare class allocation (of 4 fare classes)
on a single flight. This model incorporates fare class-dependent and time-dependent cancellation, overbook-
ing, and no-show probabilities. Valuable insights provided by this study are that booking limits need not
change monotonically over time (may increase or decrease), it may be optimal to accept a lower fare class
while simultaneously rejecting a higher fare class (due to differences in cancellation characteristics), and
cancellations cause the optimal policy to depend on both total capacity and remaining capacity. The critical
disadvantage of this approach is that extending it to even a small size airline network would result in a
significant increase in complexity due to the booking interactions between multi-leg flights.

A one-shot game theory-based simulation of pricing competition in the airline ticket price domain is
presented in [7]. When two airlines with significant capacity compete with each other and their products are
not sufficiently differentiated, the equilibrium price falls to a minimum price threshold, referred to as the
“spiral down” price. This result may shed some light on the long term decisions airlines make about airplane
size and flight frequency. The authors also note that the airline pricing domain is more similar to a repeated
game than a one-shot game. Other equilibria can be enforced in repeated games that are significantly above
the spiral down price found in the non-repeated game. This work also shows that a completely automatic
pricing mechanism can be potentially ruinous for an airline. There must be supervisory mechanisms that
take into account other aspects into pricing beyond price competition.

A game theory model of dynamic pricing that incorporates an oligopoly facing strategic customers,
buyers who will delay purchase until a future time period if there is a high likelihood of obtaining a lower
price later, is presented in [9]. The work assumes perfect foresight, all parties (sellers and customers) can
estimate perfectly future outcome probabilities and utilities. If even a portion of the population of customers
is strategic, revenue is reduced for the sellers and any strategic defenses in such a transparent market cannot
fully ameliorate this effect. These findings were found to persist among different oligopolies of sellers including
monopoly, duopoly and three-seller oligopolies. In particular, the disadvantages for sellers in the presence
of strategic customers increased as competition (number of selling firms) increased. The critical conclusion
of this work is that the most effective method to inhibit the impact of strategic consumers is to reduce
the amount of information available to consumers. This may explain in part why, in spite of the technical
feasibility, few significant predictive tools have been made available to individual purchasers of airline tickets.

4 Our Model

Feature Extraction. The number of itineraries (¿1000) in each daily query made some aggregation neces-
sary. The features extracted for prediction are aggregated variables computed from the (large) list of quotes
observed on individual query days. For each query day, there are possibly many airlines quoting flights for
a specific origin-destination and date combination. However, not all airlines will quote every day. This is
possibly due to strategic decisions of the airline or due to lack of available capacity. We limit the number
of airlines used for distinct features by focusing on airlines that quote for a specific route more than 40%
of the query days. Also, each airline may present itineraries that contain non-stop segments or segments
with one or more stop. We separate the quotes by their number of stops into three bins: non-stop round
trips, round trips with a maximum of one stop in each direction, and round trips with 2 or more stops in
either direction. For each bin, three features are computed: the minimum price, mean price, and the size of
the bin (the number of quotes). Additionally, these three features are computed for the union of all three
bins. So for each airline, 12 features are computed on each quote day. For airlines that do not exceed the
40% of quote days criteria, their itineraries are combined into a separate “OTHER” category placeholder for
which the same 12 features are generated. Finally, these same 12 aggregates are generated for all itineraries
returned and are placed in the “ALL” airlines category. An additional computed feature, referred to as days
to departure, is the number of days between the quote date and the departure date. On a quote date where a
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Class D0 Class A1 Class A2 Class A3 Class A4
(no. of vars.: 8) (no. of vars.: 3) (no. of vars.: 9) (no. of vars.: 18) (no. of vars.: 54)

Days to departure ALLminpAa ALLminp0b aDLminpAc aDLminp0

Quote Day-of-week is Mon.d ALLmeanpA ALLmeanp0 aDLmeanpA aDLmeanp0
Quote Day-of-week is Tues. ALLcountA ALLcount0 aDLcountA aDLcount0
Quote Day-of-week is Wed. ALLminp1 . . . aDLminp1
Quote Day-of-week is Thurs. ALLmeanp1 OTHERminpA aDLmeanp1

Quote Day-of-week is Fri. ALLcount1 OTHERmeanpA aDLcount1
Quote Day-of-week is Sat. ALLminp2 OTHERcountA aDLminp2
Quote Day-of-week is Sun. ALLmeanp2 aDLmeanp2

ALLcount2 aDLcount2
. . .

OTHERcount2

aminimum price quoted by any airline, for any number of stops
bminimum price quoted by any airline, for non-stop flights only
cminimum price quoted by a specific airline (DL = Delta Airlines), for any number of stops
d1 if quote is from a Monday, otherwise 0

Table 2: Raw features (sorted by feature class) available for each quote day for a specific departure day and
route. The precise number of features in some classes (A2, A4) will vary based on the number of airlines
quoting the route. The variable counts given are specific to the MSP-NYC route (92 total raw features).

specific airline does not quote any flights matching the criteria, the value from the aggregate “ALL” airlines
category is used. A listing of the variables computed on each quote day is shown in Table 2. Using the
computed feature vectors and the corresponding values for some target variable, a machine learning problem
can be formulated for performing prediction.
Policy Computation and Evaluation. As a first step, the aggregated features computed above can be used
by a regression model for prediction of the expected lowest price for a specific round trip between the quote
day and departure. Such a model can determine if the currently quoted price is, relatively speaking, a bargain.
An obvious approach is to choose the regression model with the best accuracy of all candidates, but it may
not be the model that generates the lowest average cost policy. A better way to measure performance of this
kind of prediction model is to measure performance (cost) that results from following the computed policy
recommendation. To that end, we couple each prediction model output êt, the model estimate future price at
time t, with a decision threshold d, either an absolute price difference d$ (in $) or a relative price difference
d% (a percentage), and compare against the current day’s price pt to determine the policy recommendation
(buy or defer purchase) for each day and flight.

Table 3 shows the relationship between the price model, the associated decision threshold, and the policy
recommendation rt. The prediction model is trained and accuracy is measured to achieve the highest possible
accuracy as measured by root mean square error (RMSE). However, it is also important to discount the utility
of future anticipated low prices (using a threshold) in order to determine the optimal level of risk. Our method
determines the optimal threshold value d for each model that results in the lowest average ticket purchase
price.

The following is an example of the decision threshold computation. A model trained to estimate the
minimum price between the current day and departure for the MSP-NYC route3 that is coupled with a
decision threshold −5% would compute the following logic: if the current day’s price is 5% lower than the
prediction êt, then purchase today, otherwise defer purchase. The optimal decision threshold for each trained
model can be determined by searching the range of possible values; the result of this search is shown in
Section 5.

We tested two types of decision thresholds in our experiments: (1) a percent based threshold and (2) a

3The results of this model computation are called “ProposedM: Dep” in Table 7.

7



Type Formula

Percentage rt =

{

WAIT : êt < pt(100% + d%)
BUY : otherwise

Absolute rt =

{

WAIT : êt < pt + d$

BUY : otherwise

Table 3: Policy computation by decision threshold type for day t using model estimate êt, decision threshold
d, and current ticket price pt.

relative price based threshold. We expect both threshold types to produce a good result but there may be
slight differences in the performance of the two methods. The percentage based threshold should produce
more consistent results if the price of a particular flight varies dramatically over the period of interest. The
range of d% values searched was a percentage range {-30, 30} in integer increments, and the range of d$

searched was {-100, 100} in increments of 5 dollars. The result of this search for developing the purchase
policy are shown for each target in the results section.

Class: A1

All airlines,

aggregate of stops

Class: A2

All airlines,

{0, 1, 2+} stops

Class: A3

Each airline,

aggregate of stops

Class: A4

Each airline,

{0, 1, 2+} stops

Class: D0

Deterministic Features

days-to-departure

Quote Day day-of-week

Figure 3: Lag scheme class hierarchy for product price prediction. Arrow denotes a not greater than relation-
ship (i.e. class A1 should have an equal or higher maximum time offset than class A2).

Lagged feature computation. Using only the most recent values (92 features for the MSP-NYC route)
as the entire feature set may provide reasonable prediction results in some domains, but such a model
cannot predict trends or temporal relationships present in the data. The need to represent temporally-offset
relationships motivates the idea of adding time-delayed observations to the feature set as well. We refer to
this as the addition of lagged features. For instance, if the cost of a route on day t − 7 is representative of
the price of a available on day t + 1, the 7 day delayed observation should have a high weight in the model.

Our technique uses the assumption that more recent observations are likely to have high informational
value for price prediction, but time-delayed features may hold informational value as well (i.e. the environment
is not completely stochastic). The time between a change in the market and its effect on the target variable
may be longer than one day and lagged variables can leverage those delayed relationships. Even with the
constraint that more recent observations are added before less recent observations, searching for the optimal
subset from 92 available features is still an intractably large search space.

To reduce the number of possible configurations, we introduce the notion of a hierarchical segmentation
of the feature set. In this domain, each of the 92 features is placed into one of several classes based on its
specificity using a minimal amount of domain knowledge as shown in Figure 3.
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By searching through all combinations (a small number) of feature classes used it is possible to automat-
ically tune the final feature vector for each target regression. Another novelty of our method is to allow the
addition of time-delayed instances of each class to facilitate the prediction of trends. An additional constraint
is added: more specific classes will not have more time delayed instances than more general classes.

Class
Lagged Offsets
0 1 2 7

D0 •
A1 • •
A2 •
A3
A4

(a) All Airlines

Class
Lagged Offsets
0 1 2 7

D0 •
A1 • • • •
A2 •
A3
A4

(b) All Airlines, non-stop

Class
Lagged Offsets
0 1 2 7

D0 •
A1 • • • •
A2 • • •
A3
A4

(c) Airtran Airlines

Class
Lagged Offsets
0 1 2 7

D0 •
A1 • • • •
A2 • •
A3 • •
A4 • •

(d) American Airlines

Table 4: Optimal lag schemes for various preferences on the minimum overall ticket price on route MSP-NYC
5-day round-trip with Thursday departure.

The simplest lag configuration, shown in Table 4, contains the most recent day’s value from all feature
classes. We posit that time-delayed observations from the variable of interest (such as the all airline minimum
price in Class A1 ) are likely to be predictive as well. Time-delayed observations from other more-specific
feature classes may also be but are less likely to be predictive. It is by this principle that the hierarchy and
strict ordering of lagged data additions is based. By constraining the classes so that the less informationally
dense classes have lower time delays and contribute fewer additional features, we prevent the inclusion of
extraneous, irrelevant features.4 Additional examples of optimal lag schemes for different targets is shown in
Table 11 of the appendix.

Next, we will show how the time lagged data is constructed to form the augmented features set. An
expansion of the feature set is referred to as a lag scheme expansion. Of course, the optimal lag scheme may
be different for each variable modeled; a search of the possible configurations is performed to find the best
performing configuration for a target.

The number of possible lag schemes as formulated with the hierarchy in Figure 3 for a maximum time
delay of 7 days is 108. Without the constraints between classes, there are 1250 configurations of the 5
feature classes if constrained to possible time delays of {∅, 0, 1, 2, 7}, but many of these configurations will
be uninteresting variants. Finally, without the hierarchical segmentation and constraints between classes,
there are ≈ 1062 configurations of the 92 original features.5 Using both the feature classification and the
constraint hierarchy allows for a greater variety of “interesting” lag schemes to be tested for the same amount
of search.

While a domain expert could conceive of a generally high-performance feature set, the automated lag
scheme search should contain a configurations similar to what a domain expert can build (without the cost
of becoming a domain expert). Also, the results of the optimal lag scheme search can elicit some surprising

4Days-to-departure and the day of the week are deterministic features, their value from one time-offset can be computed
deterministically from another time-offset’s value, so there is no predictive value in including these more than once.

584 price features, and 8 deterministic features (days-to-departure and quote day of the week) = 2 ∗ (27) ∗ (584)
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relationships found in the data.
Table 4 shows the optimal lag schemes for several targets. It is interesting to note that more specific

preferences (b,c,d) benefit from a larger feature set (both in temporal depth and feature class breadth).
Model Construction using PLS Regression. The novelty of our approach does not rely on any mod-
ifications to the PLS algorithm, so our treatment of PLS will be brief. Mathematically, PLS regression
deterministically computes a linear function that maps a vector of the input features xi into the output
variable yi (the label) using a vector of weights w̄. Several implementations of PLS exist [3, 14, 10]; each
with its own performance characteristics. This work uses the orthogonalized PLS, Non-Integer Partial Least
Squares (NIPALS), implementation in [14]. PLS was chosen over similar multivariate techniques including
multiple linear regression, ridge regression [6], and principal component regression [8] because it produces
better performance than the others and has an ability to adjust model complexity.

This algorithm has multiple advantages. First, PLS regression is able to handle very high-dimensionality
inputs because it implicitly performs dimensionality reduction from the number of inputs to the number of
PLS factors. Second, the model complexity can be adjusted by changing the number of PLS factors to use in
computing the regression result. This value is adjusted in our experiments to determine the optimal model
complexity in each prediction class. Third, the algorithm is generally robust to highly collinear or irrelevant
features. Fourth, the structure of a trained model can be examined for knowledge about the domain. For
these reasons, this algorithm was chosen.

The PLS regression algorithm in [14] allows users to adjust the model complexity by selecting the number
of PLS factors to generate when training. (These factors are analogous to the principal component vectors
used in principal component regression.) The number of PLS factors determines the dimensionality of the
intermediate variable space that the data is mapped to. The computational complexity does not significantly
increase for a larger number of factors but the choice does have an effect on prediction performance: too
many factors can cause over-fitting, and too few factors can cause the model to be unable to represent
relationships in the data. We systematically varied the number of factors in the optimal lag scheme search.
The best performing number of components is shown for each prediction category in Section 5.

Purchase Method (all values in $USD)
Immediate Purch. Bing Travel (% savings

over “Immed. Purch.”)
Our Method Optimal

Any Airline 320 318 (0.70%) 296 (7.5%) 281 (12%)
Any Airline, non-stop 462 461 (0.1%) 416 (9.9%) 399 (13%)

Airtran Airlines 344 343 (0.2%) 333 (3.3%) 303 (12%)
American Airlines 460 462 (−0.2%) 416 (9.6%) 403 (12%)

Continental Airlines 469 468 (0.1%) 409 (13%) 403 (14%)
Delta Airlines 458 460 (−0.4%) 420 (8.3%) 403 (12%)

Delta Airlines, non-stop 544 546 (−0.4%) 509 (6.4%) 489 (10%)
Delta Airlines , 1 stop 499 501 (−0.4%) 474 (4.9%) 462 (7.4%)

Table 5: Compares purchase algorithms by the average minimum cost (in $) for 5-day round-trip Thursday
departure tickets by specific airlines bought less than 60 days prior to departure from MSP to NYC.

5 Experimental Results

Our experiments were designed to estimate the differences in costs of using our prediction models to develop
a purchase policy. The prices for airline tickets more than 60 days prior to departure tend to vary infrequently
and not in significantly large price movements. Also, the literature suggests that demand for flights more
than two months in advance is relatively low. While precise details of the evolution of demand for a particular
flight are proprietary secrets in the airline business, some information has been published on the expected
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demand profile over time that are used by airlines in their own pricing models: first, airlines assume a
relatively fixed rate of purchases until a flight is full, and second, most tickets for a flight are sold within 60
days of departure [2, 12]. Using these facts, we conjecture that a good performance measure for a purchasing
strategy would be to compute the cost of following the purchase recommendations for an itinerary once for
each day in the range of α days to 1 day prior to departure. In these experiments, α is set to 60. This measure
involves hypothetically purchasing an itinerary precisely α times for each purchase algorithm under test (but
some purchases may be deferred for a few days based on the recommendation of the algorithm). Each of the
α purchases is called a purchase episode.
Performance Measure. The most basic purchase algorithm, called immediate purchase, is to purchase
a ticket once for each day in the α day range. All purchase episodes of this type would terminate with a
purchase event on the first day of the episode and cost would be equal to the sum of prices observed in the
α day period. The lowest achievable cost is called the optimal cost and is based on purchasing for each of
the α episodes at the lowest price observed between the beginning of the episode and the departure date.
Table 6 provides examples of several purchase episodes for one target, the policies and the associated costs.
One would expect that the best purchase policy algorithm would achieve an overall cost somewhere between
the optimal cost and immediate purchase methods but could in the worst case achieve costs higher than the
latter. In Table 5, we supply the results of estimated costs for several purchasing policies based on purchasing
4 different 5-day Thursday to Tuesday itineraries from MSP to NYC (a total of 240 purchases per method).
The training set for this period consisted of the preceding 4 weeks of departures. We also show how costs vary
based on preferences such as a customer requiring specific airline or a specific number of intermediate stops
(i.e. non-stop, 1 stop). We also compare our best policy result against the cost of following the buy/wait
recommendation from Bing Travel’s “Fare Predictor.” A detailed comparison is shown in Table 7. The
comparison methodology used here involving simulated purchases that follow a model-computed policy is
similar to that used in [5].

Days to depature 39 38 37 36 . . . 2 1 0

näıve
action • • • • . . . • • •
cost 262 262 258 257 . . . 385 453 453

bing travel
action © • • • . . . • • •
cost 262 262 258 257 . . . 385 453 453

optimal
action © © © © . . . • © •
cost 171 171 171 171 . . . 385 453 453

time series model
action © © © © . . . • © •
cost 229 229 229 229 . . . 385 453 453

Table 6: Example of policies computed by various models. The © symbol indicates a “WAIT” signal for that
day, and the • symbol indicates a “BUY” signal for that day. The models are compared elsewhere with each
other by considering the mean value of the cost vector shown for each model.

Comparing the immediate purchase cost with the optimal purchase cost shows that there is, on average,
a possible 10% savings to be achieved over immediate purchase, the most näıve approach. We denote this
percentage as the savings margin. Our method is able to achieve a savings margin in the range of 5%, about
half the distance between the näıve and the optimal.
Bing Travel Performance Comparison. It may be unsurprising that the Bing Travel recommendations do
not save significantly over the immediate purchase recommendations for the airline specific target variables.
The website only advertises that it provides a prediction about whether or not the lowest cost ticket from
any airline will be lower over the next 7 days. By this criteria, it is only possible to forecast about the weekly
cycles seen in the price time series. Also, the price changes of an individual airline do not necessarily follow
the pattern of the lowest cost price, so using these recommendations in this way is not entirely valid. For
this reason, those values are shown in gray in Table 5. It is surprising however that Bing Travel is not able
to achieve a greater savings margin on the Any Airline target. We posit that this is due to a generally risk
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averse approach taken by their algorithm: it is more much more likely than our method to advise immediate
purchase than it is to advise waiting. This assertion can be validated by looking at the distribution of buy
and wait signals computed for each day by the various policy generators.

City Pair Trip Model Buy
Signal
(%)

Wait
Signal
(%)

Mean
Wait
(days)

Wait
Std.
Dev.
(days)

Mean
Cost
($)

Cost
Std.
Dev. ($)

Decision
Thresh-
old

Lag
Scheme

MSP-NYC

M-F

naive 100 0 0.00 0.00 296 60.9 – –
optimal 11 88 10.3 9.57 249 79.7 – –
Bing Travela 83 17 0.349 0.954 293 61.5 – –
ProposedM:7b 14 86 8.60 8.80 262 75.8 +2% 78
ProposedM:Dc 23 77 5.88 6.04 265 77.0 −3% 98

Th-Tu

naive 100 0 0.00 0.00 278 43.0 – –
optimal 11 89 11.0 9.71 221 54.4 – –
Bing Travel 76 23 0.540 1.23 271 43.2 – –
ProposedM:7 23 77 7.39 8.27 242 52.1 +$10 3
ProposedM:D 17 83 8.24 8.69 243 57.1 −7% 55

NYC-LAX

M-F

naive 100 0 0.00 0.00 353 74.0 – –
optimal 16 83 7.74 8.09 306 94.4 – –
Bing Travel 73 27 0.785 1.86 443 88.0 – –
ProposedM:7 12 87 8.63 7.92 314 113 −5% 0
ProposedM:D 14 85 8.34 8.01 316 104 −$25 54

Th-Tu

naive 100 0 0.00 0.00 333 61.1 – –
optimal 17 83 7.09 7.04 302 75.7 – –
Bing Travel 70 30 0.817 1.69 378 57.9 – –
ProposedM:7 27 73 4.04 4.76 309 95.8 −2% 98
ProposedM:D 30 70 4.37 5.44 304 88.2 −2% 98

Table 7: Buy/Wait policy recommendation distribution comparison by model for city pairs MSP-NYC and
NYC-LAX, and 5-day trip periods Monday-Friday and Thursday-Tuesday.

aBing Travel’s buy or wait policy reccommendation.
bThe propsed model used to estimate the minimum price for 7 days into the future.
cThe proposed model used to estimate the minimum price for all days until departure.

Table 7 compares the raw number of buy and wait signals output by each model in our study. It is perhaps
unsurprising that the optimal policy has a high proportion of wait signals: in the MSP-NYC M-F route, the
optimal policy has only 11% proportion of buy signals. It is noteworthy that the best models constructed
with our method also emits a similar proportion of wait signals: in the MSP-NYC M-F route, the model
with the lowest average cost ($262) only emits a buy signal on 14% of the days in the test set. The Bing
Travel model has a much higher proportion of buy signals: in the same route, the Bing Travel model emits
a buy signal 83% of the days. The results are similar for all routes and dates in our survey: Bing emits buy
signals for at least 70% of the days. While the precise reasons for the Bing Travel model bias towards buy
signals is unknown, we posit that the model may be more averse to future possible price increases than our
tuned minimum cost approach.

Significant
Competi-
tors6

Mean
Passen-
gers per
Day

Std. dev. of
Lowest Cost
Ticket by
Departure7

Thu. Mon.

MSP → NYC 3 1012 0.058 0.065
NYC → LAX 6 4031 0.035 0.043

Table 8: Comparison of the two airline routes under investigation.
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Significant Competitors. Comparing the effectiveness of our policy construction approach on two different
airline routes has led to some insights about differences in the market structure of the two routes. By
comparing the results of MSP-NYC models against the NYC-LAX models in Table 7, reveals that there is
a smaller savings margin in the NYC-LAX data. The price quotes reveal that there is significantly more
competition and passenger volume in the NYC-LAX route. A comparison8 of the two routes across several
measures is provided in Table 8. The lower variance of daily minimum prices shown in the NYC-LAX route
is likely due to the large number of competitive carriers along the route. In contrast, the MSP-NYC route
has fewer “significant competitors”, so individual airlines can assert greater pricing power (and cause prices
to fluctuate more strongly).

6 Conclusions and Future Work

This investigation shows that, given sufficient publicly-observable information, it is possible to predict airline
ticket prices sufficiently to reduce costs for customers. We believe that there is a significant market for this
these kinds of models in the hands of consumers. In particular, reliable price models can assist buyers in
determining the range of expected prices for a particular itinerary. The current market environment does
not provide customers with any reliable estimates of the future costs of any particular departure meeting
their requirements. At best, frequent travelers can develop models of prices from their own past history.

In spite of being the most obvious purchase policy, buying at the earliest opportunity is not the best policy
for most customers. First, the long lead-time price may not be the lowest price available for a particular
flight before departure. Also, there is an opportunity cost associated with early commitment: a customer
risks being locked into a specific schedule that may need to be changed (for a fee).

The novelty of this work rests in a regression model formulation for domains having significant intra-
variable and inter-variable temporal relationships. The hierarchicalization of the feature set is possible with
some domain knowledge, but expert level understanding is not required. The resulting lag scheme model can
be examined for domain understanding.

Because there is sufficient structured price volatility on many airline routes, there are significant oppor-
tunities for saving money when purchasing by using the guidance of a predictive model. In addition to the
results of this work, we believe there are additional cost reductions that can be found to obtain results closer
to the optimal policy.
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Appendix

The appendix contains tables with additional details from the experiments presented in this paper. In many
cases, the tables in the paper are condensed versions of those shown here.

Table 9 shows a sample of the feature vector for an individual city pair. The exact number of features
for an origin-departure pair will vary based on the number of airlines quoting more than 80% of the quote
days. For example, if 5 airlines exceed the threshold, the number of features would be 92.

Table 10 compares various purchase algorithms by the average minimum cost (in $) for a 5 day round
trip with Thursday departure by specific airlines bought less than 60 days prior to departure from MSP to
NYC between March 12, 2011 and May 12, 2011.

Finally, Table 11 shows the optimal lag schemes by selected airlines and classes.
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Feature Description

Days to departure Number of days between quote and departure dates
Quote Day-of-week is Monday 1 if quote is from a Monday, otherwise 0
Quote Day-of-week is Tuesday 1 if quote is from a Tuesday, otherwise 0

Quote Day-of-week is Wednesday 1 if quote is from a Wednesday, otherwise 0
Quote Day-of-week is Thursday 1 if quote is from a Thursday, otherwise 0

Quote Day-of-week is Friday 1 if quote is from a Friday, otherwise 0
Quote Day-of-week is Saturday 1 if quote is from a Saturday, otherwise 0
Quote Day-of-week is Sunday 1 if quote is from a Sunday, otherwise 0

ALLminpA All airlines, minimum price
ALLmeanpA All airlines, mean price
ALLcountA All airlines, no. of itineraries
ALLminp0 All airlines, minimum price for non-stop itineraries

ALLmeanp0 All airlines, mean price for non-stop itineraries
ALLcount0 All airlines, no. of itineraries for non-stop
ALLminp1 All airlines, minimum price for 1 stop itineraries

ALLmeanp1 All airlines, mean price for 1 stop itineraries
ALLcount1 All airlines, no. of itineraries for 1 stop
ALLminp2 All airlines, minimum price for 2+ stop itineraries

ALLmeanp2 All airlines, mean price for 2+ stop itineraries
ALLcount2 All airlines, no. of itineraries for 2+ stop
aDLminpA Delta Airlines, minimum price

aDLmeanpA Delta Airlines, mean price
aDLcountA Delta Airlines, no. of itineraries
aDLminp0 Delta Airlines, minimum price for non-stop itineraries

aDLmeanp0 Delta Airlines, mean price for non-stop itineraries
aDLcount0 Delta Airlines, no. of itineraries for non-stop
aDLminp1 Delta Airlines, minimum price for 1 stop itineraries

aDLmeanp1 Delta Airlines, mean price for 1 stop itineraries
aDLcount1 Delta Airlines, no. of itineraries for 1 stop
aDLminp2 Delta Airlines, minimum price for 2+ stop itineraries

aDLmeanp2 Delta Airlines, mean price for 2+ stop itineraries
aDLcount2 Delta Airlines, no. of itineraries for 2+ stop

. . . additional airlines . . .
OTHERminpA Other Airlines, minimum price
OTHERmeanpA Other Airlines, mean price
OTHERcountA Other Airlines, no. of itineraries
OTHERminp0 Other Airlines, minimum price for non-stop itineraries

OTHERmeanp0 Other Airlines, mean price for non-stop itineraries
OTHERcount0 Other Airlines, no. of itineraries for non-stop
OTHERminp1 Other Airlines, minimum price for 1 stop itineraries

OTHERmeanp1 Other Airlines, mean price for 1 stop itineraries
OTHERcount1 Other Airlines, no. of itineraries for 1 stop
OTHERminp2 Other Airlines, minimum price for 2+ stop itineraries

OTHERmeanp2 Other Airlines, mean price for 2+ stop itineraries
OTHERcount2 Other Airlines, no. of itineraries for 2+ stop

Table 9: Feature vector example
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Any Airline 56 + 4% 6 7.5% 55 − 6% 6 8.9% 59 + 4% 6 9.5% 320
Any, non-stop 89 − 25 6 7.5% 89 − 50 6 7.6% 67 + 3% 6 8.3% 462

Airtran 62 + 0% 6 5.9% 98 − 6% 6 6.0% 107 + 8% 3 6.8% 344
American 97 − 5 6 18.4% 97 − 20 6 20.8% 97 + 5% 3 17.5% 460

Continental 33 − 15 6 10.9% 78 − 8% 6 11.9% 63 + 4% 6 12.4% 469
Delta 52 + 4% 6 13.7% 53 − 10 6 14.4% 42 + 5 6 11.1% 458

Delta, non-stop 92 + 2% 6 12.4% 98 − 5 6 13.1% 67 + 3% 6 11.5% 544
Delta, 1 stop 92 + 5 6 12.3% 92 − 5 6 12.3% 67 + 5 6 10.9% 499

Table 10: Comparison of various purchase algorithms by the average minimum cost (in $) for (5 day round
trip Thursday departure) tickets by specific airlines bought less than 60 days prior to departure from MSP
to NYC.

16



.
Model: Min. Price

Next 7 Days
Model: Min. Price
Until Departure

Model: Time
Series

All Airlines

Class
Lagged Offsets

0 1 2 7

D0 •

A1 •

A2 •

A3 •

A4

Lag Scheme 56

Class
Lagged Offsets

0 1 2 7

D0 •

A1 •

A2 •

A3

A4

Lag Scheme 55

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 •

A3

A4

Lag Scheme 59

All Airlines
non-stop

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 •

A3

A4

Lag Scheme 89

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 •

A3

A4

Lag Scheme 89

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 • •

A3 • •

A4 • •

Lag Scheme 67

Airtran
Airlines

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 • •

A3

A4

Lag Scheme 62

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • • •

A3

A4

Lag Scheme 98

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • • •

A3 • • •

A4 • • •

Lag Scheme 107

American
Airlines

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3 • •

A4 • •

Lag Scheme 97

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3 • •

A4 • •

Lag Scheme 97

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3 • •

A4 • •

Lag Scheme 97

Continental
Airlines

Class
Lagged Offsets

0 1 2 7

D0

A1 • • •

A2 • • •

A3 • • •

A4 • • •

Lag Scheme 33

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • •

A2 • • •

A3

A4

Lag Scheme 78

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 • •

A3 •

A4

Lag Scheme 63

Delta
Airlines

Class
Lagged Offsets

0 1 2 7

D0

A1 • • • •

A2 • • •

A3 • • •

A4 • •

Lag Scheme 52

Class
Lagged Offsets

0 1 2 7

D0

A1 • • • •

A2 • • •

A3 • • •

A4 • • •

Lag Scheme 53

Class
Lagged Offsets

0 1 2 7

D0

A1 • • • •

A2 • •

A3 • •

A4 •

Lag Scheme 42

Delta
non-stop

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3

A4

Lag Scheme 92

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • • •

A3

A4

Lag Scheme 98

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 • •

A3 • •

A4 • •

Lag Scheme 67

Delta
1-stop

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3

A4

Lag Scheme 92

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • • • •

A2 • •

A3

A4

Lag Scheme 92

Class
Lagged Offsets

0 1 2 7

D0 •

A1 • •

A2 • •

A3 • •

A4 • •

Lag Scheme 67

Table 11: Optimal lag schemes by selected variables (airline and number of stops) and model targets. Class
D0 contains days-to-departure and quote day day-of-week features. Class A1 contains the 3 aggregate features
(minimum price, mean price, and number of quotes) computed from all quotes on each day. Class A2 contains
the 3 aggregate features broken apart by number of stops: 0, 1, and 2+. Class A3 contains the 3 aggregate
features computed for each airline. Class A4 contains the 3 aggregate features computed for each combination
of airline and number of stops.
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